• 未来工作
    AI-First 时代:首席人事官的5个新标准 HRTech概述:波士顿咨询公司(BCG)的最新研究指出,企业在AI转型中最大的误判,并非技术路线选择错误,而是低估了首席人力资源官(Chief People Officer, CPO)在战略层的关键作用。在AI重塑商业版图的浪潮中,CEO们纷纷投资算法、平台与模型,却常常忽视一个更深层的现实:技术可以提升效率,唯有人才能重建信任。 真正的“AI-First企业”,CPO不再是执行AI战略的“配角”,而是引领组织再造与能力重构的核心驱动力。 推荐阅读了解,视频解读可以访问视频号:HRTech 重新定义CPO在AI时代的战略价值 在企业竞相拥抱人工智能的浪潮中,CEO们最常见也最致命的误判,是一种 foundational strategic error that directly correlates with value destruction:低估了首席人事官(CPO)在转型成功中所扮演的核心角色。他们常常将CPO定位为AI战略的“支持者”——一个负责执行和协调员工过渡的角色,而非从一开始就参与塑造战略、重塑组织关键能力的“引领者”。 这是一个代价高昂的错误。最新调研数据显示,尽管几乎所有企业都在尝试应用AI,但仍有高达60%的公司未能从其AI投资中产生实际价值。与之形成鲜明对比的是,表现最优的5%的公司(BCG称之为“未来型公司 (future-built companies)”)正在解锁巨大的商业回报,其营收增长、股东总回报和EBIT利润率分别比落后者高出1.7倍、3.6倍和1.6倍。这一差距的根源,并非仅仅是技术的优劣,而是企业在重构“人机协同”这一全新运营模式上的根本性失败。 为了弥合这一差距,企业必须重新设计工作流、重塑岗位架构、大规模提升员工技能,并赢得一线员工的信任——尤其是在那些最初并非为生成式AI(GenAI)或AI代理而设计的职能部门。所有这些职责都直指CPO。本报告旨在为人力资源领域的专业人士深入解读,为何CPO必须完成从战略支持到战略引领的角色转变,并详细剖析未来AI-First CPO必须具备的五项核心领导力新标准。 -------------------------------------------------------------------------------- 1. 战略角色的演变:从人事管理者到企业“能力架构师” AI时代从根本上颠覆了CPO的核心职责:其使命不再是维护和渐进式优化现有组织,而是要以前所未有的魄力,对工作结构、领导方式和组织适应性进行一场颠覆性的重构。这意味着,CPO的角色正在从传统的人事管理者,演变为企业的“首席能力架构师”(Chief Capabilities Architect)。 传统CPO职责 AI-First CPO(能力架构师) 核心:维护与渐进式发展 核心:颠覆与重构 - 人才规划与招聘 - 重新设计整合AI的工作流 - 领导力发展 - 重塑岗位架构与角色期望 - 薪酬福利管理 - 主导大规模、持续性的员工技能提升 - 绩效评估体系 - 制定衡量AI真实价值(如生产力)的KPI - 塑造积极的企业文化 - 在变革中建立并维护员工信任 “首席能力架构师”这一新角色要求CPO具备深刻的战略性和概念性思维。他们必须能够精准判断:哪些工作应由人类完成,哪些可以交由AI承担?如何构建能够无缝整合AI工具的新工作流程?这是一项艰巨的挑战,随着AI技术的不断迭代,CPO需要持续地对岗位进行“拆解”与“重组”,并决定何时引入新人才、为谁提供何种技能提升。然而,这种前瞻性的技术架构能力必须与一种永恒的领导力优势相结合——即深刻的共情能力,以引导焦虑的员工,将他们对未知的恐惧转化为拥抱变革的热情。 这一角色的紧迫性已在领先企业中得到印证。数据显示,那些从AI中获得卓越回报的顶尖公司,在为员工提供结构化的AI学习项目方面的可能性是落后者的四倍。这不仅是投资力度的差异,更是战略优先级的体现。 这种深刻的角色转变,要求CPO必须具备一套全新的思维模式与核心能力。接下来的章节,我们将深入探讨这些具体的能力标准。 -------------------------------------------------------------------------------- 2. AI-First CPO的五项核心领导力标准 尽管目前拥有直接AI转型经验的CPO凤毛麟角,但决定其成功与否的关键,并非履历本身,而是其是否具备适应AI革命的特定思维模式和技能组合。CEO们应运用以下五项标准作为评估其CPO是否具备“AI-First”领导力的核心框架。 2.1. 标准一:具备强烈的“AI好奇心”与实践经验 在ChatGPT亮相全球近三年之际,一位卓越的CPO不应再仅仅停留在“讨论”AI的层面,而必须成为AI的积极使用者和实践者。这种“AI好奇心”并非空谈,而是体现在具体的行动中: 亲自使用:积极试用各类AI工具,理解其潜力和局限。 内部试点:在人力资源部门内部率先启动AI试点项目,以亲身体验应用过程中的障碍,并探索解决方案。 定义价值:着手制定能够衡量真实价值创造(如生产力提升、效率增益)的KPI,而非满足于流于表面的参与度或活动指标。 建立技术语感:CPO无需成为技术专家,但必须具备足够的实践经验和技术流畅度,以便能够主导战略对话,并对AI将如何重塑劳动力提出清晰、有根据的见解。 2.2. 标准二:拥有领导“范式转移”的转型经验 虽然直接的AI转型经验尚属稀缺,但其他类型的大规模变革经验(如重大的技术转型或颠覆性的行业运营模式重塑)同样至关重要,其经验具备高度的可迁移性。 拥有此类经验的CPO对变革的艰巨性有着深刻的理解。他们曾亲眼见证新技术如何重新定义角色和工作流程,这为他们提供了一套预判阻力点、管理利益相关者焦虑、并驾驭转型过程中非线性混乱的心理“剧本”。更重要的是,他们在过往的转型中,已经培养出一种关键能力:识别并解决那些可能拖延甚至破坏敏捷转型的心理、实践和管理层面的障碍。 这种洞察力让他们在引导AI转型时,更不易被人性层面的挑战所颠覆。 2.3. 标准三:具备在模糊中“构建结构”的能力 最成功的CPO能够将创新思维与严谨、结构化的方法相结合,从而将团队的创造力引导至价值最高的领域。当他们参与转型决策时,他们带来的不是一堆悬而未决的问题,而是一个清晰的行动框架。这种结构化思维通常表现为: 立即解决: 他们明确了“3个当前就能回答的问题”。 验证假设: 他们对另外“3个问题已形成有力假设,并正通过实验验证”。 监控未来: 他们识别出“4个到2027年才需解决,但正密切监控其加速信号的问题”。 这种能力确保了CPO在战略讨论中,始终能带着清晰的优先级和可行的方案,推动议程向前发展,而不是让讨论陷入无休止的开放式提问中。 2.4. 标准四:能够与员工构建并管理“新的社会契约” AI转型的最大阻力并非来自技术,而是源于信任的缺失。为了直接应对这一挑战,CPO必须主动构建并管理一份与员工的“新社会契约”。员工们普遍担忧自己的工作岗位会因此消失、被降级或失去原有的意义。这些真实存在的恐惧会逐渐侵蚀员工的使命感,并固化为对变革的阻力。 这份契约是建立信任、引导变革的关键,其核心要素包括: 清晰阐明公司为何以及如何使用AI。 明确界定相关的决策将如何制定,确保过程的透明度。 公开定义成功的标准将如何衡量,让员工理解变革的目标。 理想情况下,这份契约应在转型之初,通过征求各级员工的意见来共同制定,从而建立广泛的共识和认同感。 2.5. 标准五:勇于在决策层“主张应有席位”并挑战现状 在AI转型中,CPO的角色绝不能被视为次要。他们必须心安理得地主导公司的人才战略,并深度参与公司的重塑过程,在决策桌上拥有不容置疑的一席之地。 这意味着CPO需要具备无畏的挑战者精神,能够勇敢地挑战组织内固有的假设——即使这些假设来自CEO本人。只有这样,才能确保人才战略与公司整体的AI战略紧密结合、切实可行,而不是沦为纸上谈兵。 最终,一位AI-First的CPO是三个身份的结合体:一位高瞻远瞩的战略大师、一位推动变革的创新者,以及一位信任的捍卫者 (trust champion)。 -------------------------------------------------------------------------------- 3. 引领企业迈向AI驱动的未来 定义一家AI-First公司的标准,绝不仅仅是其技术实力或算法的先进性,更在于其如何有效地重塑工作方式,并带领全体员工共同迈向未来。这使得CPO的角色变得前所未有的重要。 对于CEO而言,其在AI时代的首要任务,就是挑选、赋能并支持一位能够胜任这一重塑使命的CPO。未能做到这一点,并非简单的授权失误,而是一种领导力的根本性缺失,它将不可避免地把公司归入那60%停滞不前的落后者行列。只有确保CPO有能力、有信心在这个主角位置上发光发热,他才能真正引领整个组织,穿越变革的迷雾,迈向一个截然不同的、由AI驱动的未来。  
    未来工作
    2025年11月12日
  • 未来工作
    从“人”到“智”:2026年HR战略的五大拐点与AI共生时代的到来 HRTech概述:2026年,人力资源正进入“人机共智”新阶段:绩效管理首次超越敬业度成为核心,DEIB投入下滑,代际分化加剧,薪酬透明化陷入信任危机,而AI正从工具走向共生。真正领先的HR团队,不是被技术取代,而是用AI重塑组织绩效、文化与信任的未来。 在2026年的人力资源舞台上,HR不再只是组织的情绪调节器,而成为企业智能化转型的核心驱动力。一份调查在以对1,002位HR专业人士的全球调研为基础,揭示了AI浪潮下人力资源管理的深层结构性变化。报告指出:绩效管理首次超越员工敬业度,成为HR的头号任务;AI不再是概念,而成为日常运营的内核;而多元、公平与包容(DEIB)的退潮,正在重塑组织文化的优先级。 以下是本报告的五大关键拐点与专业洞察。 一、绩效管理登顶:HR的“北极星”重新校准 在过去六年中,员工敬业度一直是HR战略的主旋律。然而2026年,40%的HR团队将绩效管理列为首要任务(敬业度为39%)。报告指出,这一变化并非理念倒退,而是**“从激励到产出”的自然演进**。随着AI驱动的绩效系统和数据分析的普及,HR开始建立“持续反馈—目标校准—成长辅导”的闭环体系。 更重要的是,高绩效团队展现出共同特征: 五倍于低绩效团队的DEIB投入; 在绩效与敬业度之间实现良性循环; 将AI嵌入管理流程,实现“数据驱动的人本绩效”。 正如OpenClassrooms首席人力官Stéphanie Fraise所言:“绩效与敬业度并非对立,而是相互推动的双星系统。” 二、DEIB退潮与绩效崛起的“反向镜像” 数据表明,仅16%的团队在2026年仍将DEIB视为核心优先事项,相比2023年下降近一半。表面上是资源收缩,实质上是企业在“快速量化”与“长期文化建设”之间的摇摆。然而,报告明确指出:削弱DEIB,等于削弱绩效驱动力。高绩效团队往往拥有更强的包容文化、更开放的沟通机制与更高的员工信任度。多元视角并非政治口号,而是提升创新力与决策质量的底层机制。 三、代际裂痕扩大:HR必须重建多世代协作结构 报告中最具启示性的发现之一,是代际差异正成为HR战略的新变量。 Z世代与千禧一代的驱动力来自“助人成长”,却最易情绪倦怠。 X世代与婴儿潮一代追求战略影响力,却往往脱离一线员工感受。 面对代际分层的组织,报告提出两项关键策略: “交叉导师制(Cross-Generational Co-Mentoring)”:年轻人教授AI与新技术,年长者传递决策与影响力经验。 AI辅助的文化洞察系统:通过实时员工情感分析与反馈机制,帮助HR更精准识别各代群体的动机与压力源。 这不仅是文化建设,更是组织智能化的社会设计。 四、薪酬透明化进入“冷静期”:从公布到公正的距离 过去几年,薪酬透明化被寄予厚望。然而,2026年的现实是——仅18%的HR将薪酬视为重点(创六年新低)。员工的不满集中于“加活不加薪”:43%的HR表示,员工承担更多工作却未获得加薪;47%的员工正对这种“干升职”现象发出抗议。 尤其在欧洲,随着《EU薪酬透明指令》即将生效,透明已成法规底线,但**“透明≠公平”**。真正的突破来自三个层面: 构建基于能力与岗位价值的薪酬结构; 量化工作负荷与角色漂移(Job Drift); 提升经理层的薪酬沟通与解释能力。 薪酬体系的未来,不仅在于可见,更在于可解释、可信任。 五、AI共生时代的到来:从“辅助”走向“自主” 报告显示,72%的高绩效团队使用四种以上HR工具,49%使用六种以上,且42%的白领HR已在日常使用Agentic AI。这意味着AI已从“生成”迈入“代理”(Agentic)阶段——能自主规划、执行与反馈。同时,61%的HR领导者对AI伦理表示担忧,但83%仍持乐观态度。AI的使用边界不再取决于技术成熟度,而取决于组织文化中的“心理安全感”和“实验精神”。 最成熟的团队已学会三步法: 小规模AI试点(Low-risk Pilots)——从低风险场景测试实际成效; 业务对齐(Business Alignment)——确保AI工具直接关联绩效指标; 持续学习机制(Continuous Learning Loop)——让AI成为HRBP的“副驾驶”,而非“替代者”。 正如Hudson Valley Property Group的HR总监Chuck Marcelin所言: “AI 是提升,而非替代。真正落后的,不是技术,而是观念。” 六、HR的未来,是“人机共智”的未来 2026年的HR世界,正在经历一次认知重构。绩效与人文的平衡、数据与判断的共振、AI与信任的并存,将决定企业在未来五年的韧性与竞争力。“People + AI Succeeding Together”不再是一句口号,而是HR战略的核心逻辑。在AI重塑组织边界的同时,HR的真正使命,也正回归初心——让科技成就人,而非取代人。 HR Tech 观点总结:未来的优秀HR,不仅要懂“人”,更要懂“智”;不只是组织管理者,更是AI系统的设计者与文化塑造者。在AI共生的时代,HR不再被动适应技术,而要主动塑造智能组织的人性边界。
    未来工作
    2025年11月08日
  • 未来工作
    AI并购潮下的人力资源科技重构:揭示HCM市场的4个惊人真相 在AI浪潮与资本力量的双重推动下,全球人力资源科技(HRTech)市场正经历前所未有的并购潮。Workday、ADP、SAP、Deel、Dayforce等巨头正通过收购AI平台、薪资系统与编排工具,全面重塑人力资本管理(HCM)的未来格局。 表面上,这是一场AI驱动的技术竞赛,实则是一场关于“系统编排(System Orchestration)”的深层战争——谁能让企业的HR、财务与IT系统自动协同、实时行动,谁就掌握了未来。私募基金的深度介入进一步加速了这一重构,推动市场从“增长优先”转向“整合优先”。 AI只是开端,真正的竞争焦点,正在于让系统“动起来”的行动智能。 AI之外,真正改变游戏规则的是什么? 当前,人力资源(HR)领域的每一次对话似乎都离不开人工智能(AI)。从自动化招聘到员工体验,AI无疑是当下最热门的话题,重塑着我们对未来工作的想象。这股浪潮声势浩大,以至于我们很容易认为AI就是故事的全部。 然而,在这股显而易见的AI浪潮之下,一场更深刻、更具结构性的变革正在悄然发生。它关乎资本的流向、厂商的战略分野以及HR系统本质的进化。如果我们只关注AI,就如同只看到了冰山的一角。真正理解人力资本管理(HCM)市场的未来,需要我们潜入水下,看清那些正在重塑整个行业格局的底层力量。 本文将揭示四个出人意料的发现,它们共同描绘了一幅远比“AI革命”更宏大、更复杂的市场图景。 -------------------------------------------------------------------------------- 1. 真正的战场不是AI,而是“系统编排” 尽管AI是热门话题,但HCM厂商竞争的核心已悄然转向“系统编排”(System Orchestration)。这不再是简单的流程自动化,而是赋予多个独立系统(如HR、财务、IT)自动协作、实时行动的能力。它意味着系统不仅能存储数据,更能基于数据触发跨部门、跨平台的行动。 正如RedThread Research联合创始人Stacia Garr的核心观点所指出的:“未来HCM的胜负不在于谁的AI更聪明,而在于谁能让系统之间自动行动、协同决策。” 顶级厂商的布局清晰地印证了这一点。它们正在积极投资于构建这种“系统之间的连接层”。例如,Workday接连收购了AI知识层Sana、对话式AI平台Paradox、低代码AI Agent构建器FlowiseAI、文档智能工具Evisort以及人才编排AI平台HiredScore;ADP在收购低代码工作流平台Sora之后,又收购了WorkForce Software以强化劳动力管理与编排能力;SAP则将数字采用平台WalkMe与人才招聘系统SmartRecruiters收入囊中。这些举动表明,未来的竞争优势将属于那些能够让组织内所有系统协同作战的平台。 2. 隐形推手:私募基金正在重塑行业格局 一个容易被忽视的真相是,私募基金(Private Equity, PE)已经成为HR科技领域最强大的力量之一。PE的深度介入正在显著加速行业的并购节奏,并从根本上改变了厂商的优先事项,使其更加关注盈利能力、规模化和高效整合。 具体的案例包括: Thoma Bravo拟议的123亿美元私有化Dayforce的交易,预示着一场资本驱动的转型。 UKG 在Hellman & Friedman和Blackstone的支持下,本身就是合并的产物,并持续通过并购扩张。 Silver Lake 成为Qualtrics的新东家,推动其在体验管理领域的整合。 这种资本逻辑正推动市场从过去的“增长优先”转向“整合优先”。对于厂商而言,平台扩张、AI协同和交叉销售成为了投资回报的关键指标。对于采购者而言,这意味着需要更深入地理解厂商背后的资本结构,因为它直接影响着产品路线图、定价策略和客户支持的稳定性。 3. 厂商三分天下:三大新兴阵营正在形成 市场的演变并非趋于统一,而是正在分化为几个截然不同的战略阵营。理解厂商属于哪个阵营,对于企业做出正确的采购决策至关重要。目前,三大新兴阵营已清晰可见: AI编排型 (AI Orchestration) 这类厂商的目标是成为组织的智能决策中枢,将AI能力嵌入到跨系统的工作流中。以Workday、SAP和ADP为代表,它们通过收购AI Agent构建器、人才编排AI和数字采用平台,致力于构建一个能够连接HR、财务乃至整个企业的智能一体化平台。 基础设施整合型 (Infrastructure Integration) 这类厂商致力于打造覆盖HR、财务、IT的全球运营“基础设施”,控制着企业运转的核心命脉。以Deel和HiBob为例,前者通过收购全球薪资、支付、IT设备管理等公司,旨在成为“全球运营操作系统”;后者则通过整合薪资与财务规划(FP&A)工具,强化其在中端市场的人财一体化能力。 资本驱动型 (Capital-Driven) 这一阵营是第二节中讨论的私募基金力量的最直接体现。这类厂商在PE的支持下,更倾向于通过快速并购来整合市场、实现规模化盈利。以Dayforce和UKG为代表,它们的战略通常更侧重于市场整合和运营效率,通过捆绑产品和优化定价来实现资本回报。 4. 从“被动记录”到“主动行动”:HR系统的终极进化 HCM市场正在经历一场根本性的转变:HR系统正从一个存储员工信息的“记录系统”,演变为一个能够驱动组织决策和行动的“行动中枢”。 这个转变的深层含义是,系统不再仅仅是被动地存储数据,而是能够基于数据更快地理解、决策并触发跨系统行动,进而掌控工作流程的“连接性结构”(connective fabric of work)。例如,当AI识别到某位关键员工有离职风险时,未来的系统不仅会发出警报,还能自动同步提醒其主管,并主动推荐有效的留任策略和沟通话术。这标志着“行动智能”的到来。 Stacia Garr的理念精辟地总结了这一趋势:“未来的HR系统,不仅要看得见人,更要动得起组织。” AI之后,决胜的关键是“行动力” 在AI的浪潮席卷之后,人力资源科技正迈入一个全新的“行动智能”时代。真正的变革不在于谁的数据更多或算法更优,而在于谁的系统能更快地理解、决策并触发有效的行动。竞争的关键已经从单纯的“智能化”转向了系统的“行动力”与“智能协同能力”。 这场以AI为名的重构,实则是一场关于系统行动力的全球竞赛。当你的HR系统开始拥有“行动力”时,你和你的团队准备好了吗?
    未来工作
    2025年11月06日
  • 未来工作
    AI重写规则:2026年HR领导者的五项关键优先事项 在AI加速重塑工作的时代,HR已不再只是管理制度与流程的职能部门,而是组织智能化与文化变革的核心驱动力。面对AI带来的结构性变革与技能重构,2026年的HR领导者必须从战略高度重新定义“人”的价值与“工作”的边界。未来HR的使命在于引领AI转型、重塑组织结构、构建以技能为核心的灵活体系,并将AI素养纳入专业能力核心。这不仅关乎技术,更关乎组织信任、文化韧性与长期增长。本文将系统阐述AIHR报告中的五大优先方向,帮助HR专业人士把握AI时代的领导力关键。视频解读请关注视频号:HRTech AI驱动下的组织再造 2026年,人力资源领域正经历自工业革命以来最深刻的变革。生成式AI与智能自动化的快速渗透,使组织必须重新思考“工作”本身的定义。AI不再只是技术项目,而是牵动人、文化与治理的系统性转型。根据Cisco《AI Readiness Index》数据,98%的企业表示必须尽快在AI上取得实质成果,但同时91%的企业尚未具备推动AI文化的准备度。在这种背景下,HR的角色不再是执行,而是引领。未来的HR领导者应聚焦五项核心优先事项,以重新定义“人力资源”在智能组织中的战略地位。 一、共同领导组织AI转型(Co-lead Organizational AI Transformation) 在AI浪潮中,技术部门常被视为主导者,但现实表明:AI项目的成功取决于文化与人的准备度,而非算法精度。AIHR的调研显示,87%的组织尚未准备好捕捉AI的潜在价值。仅有少数企业,如Moderna,将HR与IT整合为一个战略单元,共同构建“AI协作治理模型(AI Co-Leadership Model)”,实现技术部署与员工文化并行落地。 HR的首要任务,是建立“人本导向的AI治理体系”。这意味着: 在AI卓越中心(AI CoE)中确立HR的决策席位; 绘制AI对岗位与技能的影响地图(Impact Map); 建立员工信任机制,通过内部“AI公开论坛”与透明沟通来减少焦虑。 关键数据支持: 59%的组织必须在12个月内展示AI投资回报; 91%的组织文化尚未适配AI环境(Cisco AI Readiness Index, 2025)。 换言之,AI不是IT项目,而是组织设计项目。HR是AI转型的社会架构师。 二、将AI产能再投资于增长与创新(Reinvest AI Capacity Gains into Growth) AI平均每年可为员工节省超过120小时(Google, 2025),但时间节省并不等于组织成长。AIHR的分析指出,若企业将效率红利仅用于裁员与成本控制,将导致组织知识断层与信任崩塌。IBM在2024年的案例证明了这一点——企业因AI自动化裁员8000人,随后又因创新停滞不得不重新招聘。 未来的HR领导者应将AI带来的时间盈余转化为“学习资本”,通过以下方式推动再投资循环: 能力再培养(Reskilling):识别AI替代风险岗位,建立内部技能迁移通道; 创新投入(Innovation Time):为员工预留5%–10%的创新探索时间; 组织福祉(Wellbeing):监测技术压力(Technostress)指数,防止产能过载。 关键数据支持: 86%的CHRO认为整合数字劳动力已成为核心职责(Salesforce, 2025); 30%的企业预期因AI带来生产力增长,但仅19%计划同步提升员工学习投资。 AIHR建议企业制定“产能再投资ROI模型”,以员工参与率、创新项目数量与技能增长率为衡量标准。 三、重构HR体系以支持跨职能成果(Redesign HR for Cross-Functional Outcomes) AI的价值在于连接,而传统HR的结构在于分割。AIHR的研究指出,42%的HR团队认为现有系统无法支撑战略执行,45%的HR结构对业务目标支持力不足。在AI驱动的组织中,HR不再是孤立职能,而是“跨职能网络(Cross-Functional Network)”的一部分。 领先企业正通过**“HR敏捷小组(HR Pods)”**取代传统的职能部门: 以业务成果为导向(如员工留存率、技能转化率); 成员来自HR、IT、业务部门与分析团队; 每季度复盘成果并调整策略。 例如,微软在其AI劳动力优化项目中,采用跨部门数据小组形式,将招聘、绩效与学习系统打通,实现了员工生命周期的智能化管理。这种结构不仅提升了响应速度,也让HR成为企业创新的引擎。 关键数据支持: HR数字化市场正以25%的年增长率扩张(Grandview Research, 2025); 63%的HR专业人士表示尚未准备好领导数字化转型(AIHR HRBP Model Research)。 未来的HR不再是“人力资源中心”,而是“成果交付网络”。 四、从人头数转向技能数(Move from Headcount to Skill Count) AI与灵活用工平台的崛起,使“岗位”这一概念逐渐被“技能”取代。Deloitte研究表明,技能驱动型组织比传统组织高52%的创新力,57%的应变力,更有63%的绩效领先概率。 AIHR指出,未来组织的竞争力将取决于技能的深度与可流动性(Skill Depth & Mobility)。这意味着HR需要: 建立AI辅助的技能图谱(AI-enabled Skills Taxonomy); 允许员工、合同工与AI代理人(AI Agents)按项目灵活协作; 将绩效与激励机制从职位导向转为成果与技能导向。 某全球制造集团在AI驱动的技能生态建设中,通过AI自动识别员工技能并匹配项目需求,项目完成效率提升了35%。 关键数据支持: 77%的高管认为灵活技能流动是未来组织韧性的关键(Deloitte, 2025); 73%的员工认为基于技能的实践将提升工作体验与公平感。 技能将成为新的“货币”,HR的任务是建立其“流通机制”。 五、将AI素养打造为HR的核心竞争力(Build AI Fluency as a Core HR Capability) AI素养(AI Fluency)不只是会用AI工具,而是能理解其逻辑、治理与伦理。AIHR在2025年调研了1500名HR专业人士,发现: 仅35%的人认为自己具备AI协作能力; 61%的HR几乎未参与AI项目; 38%的人依靠自学AI工具。 AI素养包含四个层面: 认知层(Awareness):理解AI原理、限制与潜在风险; 应用层(Application):将AI嵌入招聘、绩效与学习流程; 伦理层(Ethics):识别偏见、防止算法歧视; 领导层(Leadership):推动组织在“负责任AI”框架下运作。 AIHR提出“T型HR模型(T-Shaped HR Model)”,将AI能力与商业洞察、人文判断并列为核心专业能力。正如AIHR首席科学家Dieter Veldsman所言:“AI素养将成为HR的新语言,谁能流利表达,谁就能定义未来。” 从管理者到智能组织的共同设计师 AI的普及意味着HR职能正被彻底重塑。未来的HR领导者不仅要懂人,更要懂算法;不仅要能管理员工,更要能管理智能系统。AIHR认为,HR将成为连接技术理性与人文温度的桥梁。他们的成功,不仅取决于技术采用速度,更取决于是否能引导组织在效率、信任与意义之间找到平衡。 2026年的人力资源领导者,将不再是事务执行者,而是智能组织的共同设计师(Co-Designer of Intelligent Organizations)。 来源:AIHR《HR Priorities 2026 Report》,2025年11月发布。(参考文献包括Cisco AI Readiness Index, McKinsey State of AI 2025, Deloitte Skills-based Organization Report, Salesforce Agentic AI Impact Study, Grandview Research 2025.)
    未来工作
    2025年11月05日
  • 未来工作
    从岗位到技能:全球HR战略的范式转移 “以技能为核心(Skills-first HR)”在人力资源战略中的重要性。面对全球经济波动与技能短缺,传统基于岗位的HR模式已难以支撑企业敏捷转型。Skills-first HR以“技能”为组织设计和人才配置的核心,通过数据与AI技术实现员工技能与业务需求的动态匹配,促进内部流动、降低招聘成本,并增强组织的战略韧性。 视频解读请访问视频号:HRTech 在全球经济充满不确定性、组织转型节奏不断加快的当下,企业在“人才战略”上的核心逻辑正在经历深刻变革。过去以“岗位”为基础的管理体系,正在被一种更具前瞻性的模式取代——“以技能为核心(Skills-first HR)”。这一理念不仅是人力资源职能的创新,更是企业竞争力与战略韧性的重要基石。 一、技能短缺成为企业生存的战略焦虑PWC 2024 年全球CEO调研显示,45%的首席执行官认为,如果维持现有运作模式,他们的企业在十年内将难以为继。主要原因之一,正是组织缺乏适应未来变革所需的关键技能。劳动力市场数据亦显示,美国、欧盟及英国的劳动生产率增长自疫情后明显放缓,而技能缺口被视为拖慢增长的核心因素。在这种背景下,企业亟需一种能够快速识别、调配和培养技能的机制,使人力资源成为战略执行的关键引擎。这正是“Skills-first HR”概念的由来。 二、Skills-first HR的核心逻辑Skills-first HR的理念是:不再将岗位视为人力资源管理的基本单位,而是以“技能”作为组织设计与人才配置的核心要素。这种转变有三大特征: 以技能而非职位驱动:通过识别员工可迁移的技能,快速匹配组织内部机会,打破岗位边界; 以数据和技术为支撑:借助AI与数据分析,实时描绘技能地图,预测未来需求; 以内部流动和持续成长为目标:让员工在组织内部找到成长路径,减少外部招聘依赖。 这种模式下,内部员工的再部署更高效、更具成本优势,同时组织的敏捷度显著提升。 三、构建Skills-first HR的四大支柱作者提出,企业要实现从“岗位导向”到“技能导向”的转型,需要构建四个关键基础: 技能分类体系(Skills Taxonomy):建立组织统一的技能语言与评估标准。无论是新加坡的沟通能力还是美国的项目管理,都需在同一框架下可比、可验证。然而,这一体系的建立往往伴随权力结构的博弈——总部主导与地区自治的冲突,技术团队与HR专业判断的差异,都可能成为阻力。成功企业往往将其上升为“业务战略项目”,而非HR内部工程。 技能盘点与验证(Skills Audit):通过员工自评、管理者反馈及AI数据推断等多渠道,形成“技能护照(Skills Passport)”。组织可据此生成技能热力图,识别短板与潜力区域,为战略规划提供依据。关键在于——“先行动,再完善”,而非追求完美数据。 需求建模(Demand Modelling):仅了解现有技能远远不够,企业还需预测未来需求。作者引用的案例中,一家保险公司通过外部专家与AI模型发现,未来10年内15%的岗位将被技术替代,50%的岗位将被重塑。这类预测帮助企业提前布局人才发展与学习战略。 减少结构性障碍(Structural Barriers):传统层级式的岗位体系已不适应敏捷用工。Mastercard通过将3.3万名员工分入11个“行会(Guilds)”,每个行会设有学习学院,员工可跨部门、跨地区流动。这种灵活架构被视为未来组织的雏形。 四、变革落地的关键:从HR项目到业务战略转向Skills-first HR并非一蹴而就。研究指出,成功转型的企业普遍遵循三大原则: 分阶段推进:以小范围试点为先,积累组织经验; 业务牵引:由CEO与高层主导,明确其对战略目标的支撑; 跨部门协作:如保险公司建立“HR数据作战室”,由精算与HR团队共同分析技能数据。 同时,HR职能本身也需重塑: HR需掌握数据分析能力,从“经验判断”转向“数据洞察”; 从被动响应转为战略前置,基于业务规划主动塑造未来能力; 打破传统“招聘、培训、薪酬”孤岛,重构以技能价值链为导向的HR组织架构。 五、从“职位管理者”到“能力战略家”Skills-first HR不是HR的技术革命,而是一场思维范式的转变。当企业真正以技能为中心运营,员工不再只是被动的“岗位占有者”,而是可流动、可成长的“能力载体”;而HR,也从后台支持者,转变为推动组织战略实现的“能力架构师”。 未来,谁能先掌握“技能语言”,谁就能在人才竞争中赢得先机。 来源:Collings, D. G. & McMackin, J. (2025). Skills-first HR: a key enabler of future global strategy. Organizational Dynamics, 54(1), 101140. Elsevier Inc.
    未来工作
    2025年11月03日
  • 未来工作
    全球HR能力报告:超过一半HR低估了AI转型的挑战 HRTech概述:在AI驱动的新时代,人力资源正在经历前所未有的能力裂变。《全球HR能力报告》通过对13,000多名HR专业人士的研究发现,超过一半的HR团队对自身应对AI转型的能力缺乏信心。报告指出,未来HR的竞争力将由五大核心要素决定:商业敏锐度、数据素养、数字敏捷、人员倡导与执行卓越。然而,现实中多数HR仍停留在事务管理阶段,对业务理解不足,对技术应用信心不强。AI的浪潮不仅重塑岗位与流程,更在重新定义HR的角色与价值。 想要掌握这场变革的关键,就必须以数据为依据、以数字化为引擎。关注HRTechChina,获取最新全球HR趋势与AI转型洞察。 在AI加速重塑组织的时代,人力资源部门正站在一场能力重构的门槛上。最新发布的《Future-Ready HR Skills Report(未来型HR技能报告)》通过对13,000多名全球HR专业人士的调研,为“面向未来的人力资源能力”描绘了全景图。关注视频号:HRTech 获取视频解读。 报告揭示了一个令人警醒的现实: 超过一半的HR团队承认,他们没有信心能够真正满足企业对人力资源职能的期待。 这份研究不仅是关于“HR需要学习什么”,更是关于“HR如何重新定义自己”的答案。 一、五维度重塑:未来HR的核心能力地图 报告认为,面向未来的HR需要具备五大核心能力: 商业敏锐度(Business Acumen):理解商业逻辑,将人力决策与价值创造直接挂钩。 数据素养(Data Literacy):从数据中提炼洞察,驱动基于证据的决策。 数字敏捷(Digital Agility):懂得何时、如何、为何使用技术以创造业务影响。 人员倡导(People Advocacy):在变化中坚守公平、包容与价值导向。 执行卓越(Execution Excellence):将战略转化为结果,解决复杂问题并推动落地。 这五大领域共同构成HR的“未来能力模型”,而现实中,HR群体在这些方面的差距仍然明显。 二、能力错位:HR的“信心陷阱” 1. 商业敏锐度:懂业务,才有发言权 73%的HR自认为具备商业理解力,但“商业流利度(Commercial Fluency)”是得分最低的子能力。在服务岗位上,这种差距更为突出;相反,那些直接参与战略制定的HRBP得分明显更高。 结论: HR若想成为决策层的一部分,必须理解利润模型、市场动态与客户需求。 2. 数据素养:从报告到洞察的进化 人力资源拥有史上最丰富的数据,却仍未能把数据转化为决策力。最大短板不是工具,而是**“数据翻译力”与“故事化表达”**——也就是让数据真正说服业务。 AIHR指出:“Insight without action is just noise.” —— 洞察若无法落地,只是噪音。 优秀的HR不仅能读懂数据,还能讲出影响决策的故事。在未来三年内,“数据翻译力”将成为HR是否能参与公司决策的分水岭。 真正具备数据素养的HR,能用一页图表讲清决策依据,用一句洞察带动组织行动。 3. 数字敏捷:技术不再是选项,而是生存力 数字敏捷是目前HR最薄弱的领域。仅39%的受访者认为自己擅长使用数字工具,而经验的积累并未显著改善这一点。很多HR“会用系统”,却不会评估ROI或选择合适的工具。 未来的关键在于: 技术思维与业务判断的融合。数字化不是HR的“额外技能”,而是能力底座。 4. 人员倡导:价值导向的领导力回归 74%的HR表示对“以价值为导向”充满信心,但在“伦理与风险应对”上存在明显短板。报告指出,真实的组织历练比任何课程更能塑造HR的价值观。 优秀的HR懂得在变革中守住边界,在组织利益与员工权益之间找到平衡。 5. 执行卓越:让战略真正落地 82%的HR对自己的执行力充满信心,但“分析型问题解决”仍是普遍弱项。执行力不是“多做”,而是“做对”。 真正的执行卓越,是能在复杂环境中保持方向感与持续性,并通过数据衡量结果,而非过程。 三、四大转型优先级:从“泛学”到“定向成长” 报告最后总结出未来HR能力建设的四个关键方向: 聚焦基础(Focus on Fundamentals):商业流利度、数据翻译力、数字决策力,是HR的生存底线。 宽度与深度并行(Build Broad and Deep Skills):未来HR应既懂人,又懂数、懂业务、懂技术。 以曝光驱动学习(Learning Through Exposure):能力成长源自跨部门协作、实战项目与真实场景,而非年资堆积。 看清真实能力(Understand Real Capability):不同职能、人格与行为模式决定HR的发展路径,应以“行为画像”而非“职位等级”来评估。 四、90天落地蓝图:从认知到实践 报告提出可操作的三步路径: 第1月:诊断与对齐评估团队在商业理解、数据与工具应用上的差距,确定两个可量化业务目标。 第2月:实战与复盘发起跨部门OKR项目,组织“数据驱动决策”模拟演练。 第3月:数字化落地试点自动化流程或AI工具应用,将结果与业务指标直接挂钩。 这份“90天计划”帮助HR从学习走向执行,实现能力的真正转化。 HR的未来,不在AI,而在人 报告的结尾写道: “HR团队的成功,取决于他们的技能是否仍具相关性。” AI不会取代HR,但会淘汰那些不懂业务、不会用AI、缺乏判断力的从业者。未来的HR将不只是“人事管理者”,而是能用数据和洞察驱动组织成长的战略伙伴。 面对AI浪潮,中国的HR正站在全球转型的同一起跑线上。要抓住时代机遇,关注HRTechChina,获取更多关于HR数字化转型、AI应用与全球趋势的最新解读。
    未来工作
    2025年10月31日
  • 未来工作
    【硅谷】Mercor完成3.5亿美元C轮融资,估值达100亿美元:引领“人类训练AI”的新劳动形态 HRTech概述:硅谷公司 Mercor 近期完成 3.5 亿美元 C 轮融资,估值约 100 亿美元。它所做的,就是将医生、律师、银行家等领域大牛纳入平台,帮助他们指导AI模型理解判断、意图与专业经验。这样的角色不是重复性劳动,而是“专家 → 训练师”的转型。 在AI浪潮加速重塑全球劳动力市场之际,总部位于旧金山的AI科技公司 Mercor 宣布完成 3.5亿美元C轮融资,由 Felicis 领投,Benchmark、General Catalyst、Robinhood Ventures 等共同参投。此轮融资使公司估值达到 100亿美元,较上一轮增长约五倍,成为AI经济领域增长最快的独角兽之一。 人机协作的新范式:从执行者到“AI训练师” Mercor成立于2022年,由联合创始人兼CEO Brendan Foody 与CTO Alex Kovacs 创办,定位于“连接人类专才与AI经济”的桥梁。公司构建了一个覆盖全球的专业人才网络,现已拥有 3万多名专家,每天支付超过 150万美元 的报酬,净推荐值(NPS)超过 65。 这些专家来自医疗、法律、金融、工程等领域,他们通过Mercor平台为AI模型提供真实世界的知识、经验和判断力训练。Mercor的核心理念是——AI不取代人,而是由人来训练AI,让机器学习人类的判断、意图与品味。 CEO Brendan Foody在公司公告中表示:“AI的每一次进步,都会释放新的‘人类潜能’。我们看到越来越多的专业人士从重复性劳动中解放出来,专注于AI无法可靠完成的高价值工作。” 投资人押注“Human + AI”经济体 本轮融资的领投方 Felicis 创始人 Aydin Senkut 指出:“Mercor正在构建未来AI经济的基础设施,让人类智慧成为AI系统不可或缺的一部分。掌握专业知识、能够提供判断和反馈的专家,将成为AI时代最有价值的劳动力资源。” Mercor的客户已涵盖多家前沿AI实验室和财富500强企业,广泛应用于医疗影像识别、金融分析、法律推理、企业智能体训练等领域。通过将专家的知识转化为模型评估与微调数据,Mercor帮助企业在保持合规与质量的同时,加速AI系统的落地和价值创造。 迈向“人类+智能体”的经济时代 Mercor表示,此轮融资将主要用于三大方向: 扩大专家网络规模,吸纳更多领域型人才; 优化匹配算法,提升专家与AI项目之间的匹配效率; 加速项目交付,强化人机协作流程与企业集成能力。 分析人士指出,Mercor正推动一种全新的劳动形态:人类不再是AI的竞争者,而是“AI训练师”。在未来十年,数以百万计的专业人士将以“教机器做事”的方式参与经济创造,让AI成为“被训练的学徒”,而非“取代者”。 人类潜能的再次解锁 随着AI逐步进入企业核心运营层,Mercor的模式代表了从“自动化”到“增强化”的转变——人机协作成为提升生产力的核心引擎。Foody认为,企业价值链将持续上移,“那些能把专业判断力转化为可学习标准的人,将成为AI经济中最具竞争力的群体。” Mercor 融资历程一览: 2022 年(种子轮 Seed):融资约 360 万美元,投资方包括 Y Combinator 与 General Catalyst。 2023 年(A 轮融资):融资约 3,000 万美元,由 Benchmark 与 Felicis 领投,投后估值约 6 亿美元。 2024 年(B 轮融资):融资约 1 亿美元,主要投资方为 Benchmark 与 General Catalyst,估值提升至 20 亿美元。 2025 年 10 月(C 轮融资):完成 3.5 亿美元融资,由 Felicis 领投,Benchmark、General Catalyst、Robinhood Ventures 等参投,公司最新估值约 100 亿美元。
    未来工作
    2025年10月28日
  • 未来工作
    AI让“明星员工”跑得更快了,但企业该如何避免被甩出时代? 人工智能的浪潮正在改变一切:生产效率、创新速度、岗位结构——甚至连“优秀员工”与“普通员工”的界限,也被重新划定。 《华尔街日报》(Why AI Will Widen the Gap Between Superstars and Everybody Else)近期的一篇报道指出:AI 并不会让所有人变强,反而可能让强者更强、差距更大。这种“AI驱动的不平等”,正在成为未来职场最值得关注的风险之一。 一、技术的红利,为何被少数人收割? AI 的普及表面上看是“全民赋能”,但它的使用门槛并不低。报道指出,AI 的复杂性、迭代速度与专业门槛,使得“超级个体”(Superstars)更容易脱颖而出。 他们懂算法逻辑、会用AI解决复杂问题,能够把技术转化为成果。而普通员工,即使有相同的工具,却因缺乏系统性知识、判断力与实践经验,难以将AI真正变成生产力。 这意味着:AI时代的竞争,不再是资源之争,而是“学习速度”的较量。 二、AI鸿沟的核心,不是技术差距,而是学习差距 这篇文章揭示了AI不平等的三个深层逻辑: 复杂性加剧AI技术的快速演化让学习曲线越来越陡峭。能跟上的人越来越少,掉队者越来越多。 持续学习成为壁垒超级员工持续更新技能,而大多数人仍停留在“等培训”的阶段。学习速度,成为新的分水岭。 技术民主化的反讽AI工具虽然更易获取,但这恰恰让顶尖人才能更轻松地做更复杂的事。同样的工具,不同的结果。 于是,组织内部形成了新的马太效应:AI让强者更快进步,让普通员工更快被替代。 三、风险不仅在个体,更在组织 这场AI鸿沟,不只是个人危机,更是组织风险。一旦企业内部的“AI学习差”扩大,将带来三大连锁反应: 协作失衡: 团队知识水平出现断层,协作效率下降。 心理焦虑: 普通员工感受到不公平与被边缘化,信任感削弱。 组织失衡: 创新能力集中在少数人手中,企业抗风险能力下降。 换句话说,AI不仅在重塑生产力,也在重塑组织结构与文化。 四、HR和企业领导者该如何应对? 文章结尾提出了三个方向,值得每个组织认真执行: 投资学习,而不是只买工具与其投入预算在AI软件订阅上,不如投入到系统培训与实战项目中。AI不是“会不会用ChatGPT”,而是“能否改变工作方式”。 建立终身学习文化推动员工形成“持续更新技能”的习惯,从一次性培训转向循环式学习。 从“个体精英”转向“集体智能”让AI成为团队共享的智力基础,而非个别明星员工的秘密武器。通过知识分享机制、AI应用案例库、跨部门学习小组,让“学习”成为组织的生产力。 五、AI不是决定差距的原因,态度才是 AI不会自动制造不平等,但它会放大一切差距——包括学习的速度、认知的高度与组织的格局。未来的职场,不会有“技术平均值”,只会有“学习分层”。 对于个人:越早开始使用AI,越早掌握未来语法。对于企业:越快建立AI学习体系,越能缩小组织内部的智力差距。 AI的门槛并非技术,而是心态。问题不是“AI会不会取代人”,而是“你是否还在等别人教你用AI”。 AI正在重新定义“生产力红利”的分配方式。在新的职场版图中,领先几个月的学习投入,就可能决定几年后的竞争格局。这既是时代的不公,也是一种机会。因为主动者,永远有先发优势。
    未来工作
    2025年10月15日
  • 未来工作
    超级经理的崛起:AI 时代的新型管理角色 Josh Bersin 在最新文章《The Rise of the Supermanager》中提出:未来的管理者不应只是简单协调者,而应成为真正的 Supermanager(超级经理) —— 协同 AI 重塑流程、赋能团队、主导创新。虽然 AI 工具能够带来个体效率提升(约 10–20%),但这只是底层红利。若要撬动组织生产力边界,就必须走向多流程自动化和全面流程重构。Supermanager 会主动在自己的职能边界内“实验”、推动 AI 应用、引导团队创新。 我从未见过像 AI 这样大规模、快速、而且充满乐观情绪的技术投资。2025 年,Google、Nvidia、Meta、Microsoft、OpenAI 和 Amazon 的资本支出接近 9000 亿美元,相当于美国 GDP 的近 3%。 为什么如此乐观?因为企业相信,AI 是未来的生产力技术,而且越早让公司拥抱 AI 越好。 但到目前为止,实际结果喜忧参半。 虽然人们被 AI 工具所吸引,但美国 GDP 却在下滑(从 2023 年的 2.9% 降至 2025 年预计的 1.8%,上半年甚至出现 -1.6% 的负增长),企业利润也在放缓。IT 行业利润增长 34%,金融服务增长 10%,但其他行业利润大幅下滑,说明 AI 的盈利目前主要集中在 AI 公司自身。 这就是一个关于承诺、期望和众多好点子的故事。 大企业的难题 AI 的潜力毋庸置疑。我们在研究与咨询中也彻底革新了工作方式,实现了在几乎不增加人手的情况下保持增长。 但对那些有着几十年官僚体系、繁多职位层级的大型组织而言,要真正实现生产力的提升并不容易。 我们调研了数百家公司,正在开展一项重大研究。在 HR 领域,已经有超过 100 个 AI 应用场景,可以改善招聘、员工支持、发展与生产力。例如渣打银行已经用 AI 来评估绩效和撰写评语。 然而,正如 MIT 最近的一项研究所示,真正的“流程再造”还没有到来。 四阶段框架与生产力极限 在我们的四阶段框架中,一个人使用 AI 代理来加速工作是相对容易的。OpenAI 的数据显示,41% 的使用场景是“信息检索”,其次是写作、数据分析和回答复杂问题。这些“个人生产力技巧”确实能带来帮助,但提升的上限通常只有 10–20%。 那么,如何实现“多流程自动化”,真正重构工作的方式? 这就是管理的职责所在,也是我今天要讨论的。   管理模式的演变 我研究管理已有 30 年,这是一条曲折的道路。它可以追溯到 Peter Drucker 的《卓有成效的管理者》,之后经历了 Jack Welch 的裁员式管理、Howard Schultz 的员工关怀、Brene Brown 的勇敢领导、John Mackey 的有意识资本主义,再到 IBM 的敏捷管理和 Zappos 的“无管理者”实验(最终失败)。 管理从来是一个充满新思想的领域,模式层出不穷。但我今天要讨论的是:在 AI 世界中,有效管理正在发生怎样的变化? 两大变化:赋能与实验 在过去十年中,出现了两大深刻变化: 赋能(Empowerment) 员工比以往更有自主权,能获取大量信息和强大工具。 互联网和疫情让员工获得前所未有的自由,他们不会再回到过去。 实验(Experimentation) 技术民主化让变革不再完全来自上层,而是更多自下而上推动。 一线团队不只是执行者,而是创新与变革的源头。 这两点在当今商业世界全面展开。忽视它的企业将面临风险。 微软、Meta 等公司快速转向 AI,依靠项目驱动的领导文化。拜耳、联合利华、汇丰、万事达、Spotify 和飞利浦等企业的成功,也源于小型自治团队承担改进责任。 今天,与过去不同的是,超级经理无需等待高层委员会批准。他们直接在前线实验、迭代并推动变革。 打破组织惰性 随着技术飞速发展,职位与头衔反而成为阻碍(“这不是我的工作”)。超级经理则打破这种模式,主动承担责任,推动成长与改进。他们拥抱新思想,分享探索经验,把 AI 的实践直接带入业务,而不是等待总部下达“项目指令”。 这种趋势的原因在于:AI 与过去的技术不同。 ERP、云计算、移动互联网等技术往往需要大量 IT 投入和多年建设。而 AI 是一种 终极民主化技术,任何人都能学习使用。最具创新的人,可能是最年轻或资历最浅的员工,因为他们“通过实践学习”,没有旧有 IT 习惯的束缚。 这就是所谓的 “超级员工效应(Superworker effect)”:每个人都可能成为高绩效者,经验的价值相对下降。新想法可能来自任何地方,最贴近客户或流程的人反而能创新最多。 管理角色的转型 AI 让监督与绩效考核变得更容易,因为它能跟踪行为和结果。这使得领导者可以从繁琐的监督中解放出来,专注于战略、辅导、协作和工作再设计。 因此,经理不会消失,而是角色被重新定义: 监督和绩效管理是基本职能; 真正优秀的经理要在流程再造、实验与增长方面脱颖而出。 传统的“推动业绩”“强化竞争”依然重要,但现在被放到学习与成长的语境下。问题从“你今天完成了什么”变成“你今天学到了什么”。 超级经理带来信任、支持和同理心,帮助员工在 AI 时代学习、重塑与成长。 我们是否需要更少的经理? 如果管理者只做监督工作,那确实可能被 AI 代理取代。但这类“空壳经理”本就存在多年,未来会更快被淘汰。 真正的超级经理则不同: 他们协调跨团队的创新; 在生产力项目上进行理性投资或果断止损; 促进知识共享、团队协同和优先级一致性。 这才是未来管理者的核心价值。 我并不认为“中层经理”会消失,而是他们的工作内容正在重新定义。能推动超级经理行为的公司,将在新世界中脱颖而出。 AI 带来的不只是技术,而是管理模式的再造。 如果过去十年是“数字化转型”, 那么未来十年就是“管理重构”。 超级经理不会是额外的头衔,而是企业在 AI 时代必须具备的关键能力。
    未来工作
    2025年09月24日
  • 未来工作
    OpenAI将推AI招聘平台,直面LinkedIn,重塑未来劳动力市场 HRTech快讯:OpenAI 宣布将于 2026 年中推出全新 AI 招聘平台,直接挑战 LinkedIn!平台将利用 AI 精准匹配企业与候选人,特别为中小企业与地方政府提供专属服务。与此同时,OpenAI 还将通过 OpenAI Academy 推出 AI 流利度认证,计划到 2030 年与沃尔玛合作,为 1000 万美国人颁发认证。 美西时间2025年9月4日,OpenAI 再次将自己推向了公共议程的中心。这一次,它不仅在人工智能模型的迭代上吸引眼球,而是瞄准了全球劳动力市场的核心——招聘与技能认证。 OpenAI 在官网和对外沟通中宣布,将于 2026 年中正式推出 OpenAI Jobs Platform,一个由人工智能驱动的招聘与人才匹配平台。这一产品直接把 OpenAI 推向了与 LinkedIn 的正面竞争:后者是全球最具影响力的职业社交与招聘平台,由微软全资拥有,而微软恰恰也是 OpenAI 的最大资金支持者。 “AI招聘”的新赌注 OpenAI 应用业务 CEO Fidji Simo 在博客中直言:“我们将用 AI 来帮助找到企业真正需要、人才真正能够提供的契合点。” Jobs Platform 不仅服务大型企业,还将开设专门轨道,支持中小企业与地方政府寻找合适的 AI 人才。这一定位显然是对 LinkedIn 的差异化突破,后者的产品核心始终围绕大企业和职业人士。 有趣的是,LinkedIn 联合创始人 Reid Hoffman 曾是 OpenAI 的早期投资人,而如今 OpenAI 却推出了一个可能动摇 LinkedIn 根基的产品。这一“师出同门”的博弈,为科技行业再添戏剧性。 技能认证与全民普及 Jobs Platform 并不是 OpenAI 的唯一动作。与此同时,OpenAI 宣布将在 OpenAI Academy 基础上推出 AI 流利度(AI Fluency)认证,预计 2025 年底试点,并计划在 2030 年前完成 1,000 万美国人的认证。该计划已经吸引了 Walmart、John Deere、BCG、Accenture、Indeed,以及德拉瓦州政府、德州商会等合作伙伴加入。 这一系列举措与白宫推动的 AI 普及教育战略紧密结合。OpenAI CEO Sam Altman 在与记者交流时明确表示,Simo 不仅将负责招聘平台,还将 oversee 其他新应用,包括浏览器、社交媒体等,意味着 OpenAI 正试图从 ChatGPT 的单一产品公司,迈向一个多元化应用生态。 矛盾与承诺 AI 带来的劳动力冲击并非危言耸听。Anthropic CEO Dario Amodei 就曾警告:到 2030 年,AI 可能消灭多达 50% 的入门级白领岗位。Simo 在博客中承认:“我们无法阻止这种颠覆,但我们能做的,是帮助更多人具备 AI 技能,并让他们与需要这些技能的企业相连接。” OpenAI 试图用数据证明 AI 并非只有替代。其首席经济学家团队最新发布的研究指出:在教师群体中,ChatGPT 平均每周可帮助节省 6 小时工作时间;在宾夕法尼亚州的公务人员中,ChatGPT 平均每日节省 95 分钟。这些数字不仅代表生产力的提升,也为 OpenAI 的社会叙事提供了有力支撑。 从非营利到产业合作 OpenAI 的“机会战略”不仅停留在概念层面。公司先后举办了多场落地活动: Nonprofit Jam —— 与沃尔顿基金会、Emerson Collective 等组织合作,帮助非营利机构实操 AI 工具,提高公益效率。 AI for Economic Opportunity Demo Day —— 联合 GitLab Foundation 展示 AI 在教育、公共服务、社会公平等领域的潜力。 华盛顿 DC 研究工作坊 —— 邀请经济学者与政策制定者,共同建立指标体系,评估 AI 对就业与生产力的长期影响。 这些实践动作强化了 OpenAI 的外部形象:它不仅是一家技术公司,更是一家主动承担社会责任的机构。 “机会”还是“幻觉”? 在市场层面,OpenAI 的雄心显而易见。通过招聘平台,它直接挑战 LinkedIn 的行业垄断;通过技能认证,它试图将“AI 流利度”打造成人才市场的“新英语”。而通过公益与研究,它也在争取舆论与政策的支持。 但问题是,AI 能否真的创造“新的工作”,还是仅仅提高了部分人的效率?OpenAI 的回应是:即便部分传统岗位消失,新岗位和新技能的需求也会被创造出来。其策略是——不回避问题,而是把答案写进产品与计划之中。 随着 Jobs Platform 的落地倒计时,OpenAI 正在完成从“AI 工具公司”到“社会基础设施提供者”的转变。正如 Simo 在博客中写道:“AI 是一种前所未有的机会,它应该属于每一个人。” 这场由技术、资本、政府和社会多方力量共同推动的实验,将在未来几年决定一个关键命题:AI 究竟是就业的威胁,还是新的机会引擎。
    未来工作
    2025年09月05日