-
AI培训
大咖观点:生成式AI将全面普及,HRTech的未来在哪里?
HRTech概述:Josh Bersin最新推文谈到,生成式AI全面进入主流!46%的企业领导每天使用AI,80%每周使用,74%报告正向回报,AI投资普遍超千万美元。当前主要用于会议总结、数据分析与文档撰写,但AI正在从“个人助理”升级为“多功能智能体”。IBM Ask HR 与 Galileo 等系统正在成为企业的数字伙伴。未来,AI Agent 将具备记忆与个性,并通过数据治理实现跨系统协作。AI不会取代工作,而是让HR成为“超级工作者”。企业的竞争,将取决于谁能率先完成AI系统化转型。推荐阅读了解,视频解读可以访问视频号:HRTech
这里有一份JoshBersin发布的报告《充分发挥 AI 影响力,拥抱超级员工时代》,点击下载
Josh Bersin刚刚完成了一次横跨欧洲、亚洲和中东、累计近六万英里的行程,拜访了数百家公司,讨论他们的AI战略。虽然每家公司的成熟度各不相同,但有一点非常明确:AI作为商业工具已经到来——它是真实存在的,其使用场景正在迅速增长。
宾夕法尼亚大学沃顿商学院(Wharton)的最新调查显示,46%的商业领袖每天使用生成式AI(Gen AI),80%每周至少使用一次。在这些用户中,72%正在衡量投资回报率(ROI),74%表示结果是正向的。顺带一提,HR部门在使用率上排名第三,仅次于IT和财务部门。
预算投入也在大幅上升:23%的大型公司每年在AI上的支出超过2000万美元,43%超过1000万美元。
企业从AI中获得了什么?答案是:生产力。目前最主要的应用是我称之为“第一阶段”的使用方式——个人生产力提升。AI帮助员工总结会议、分析数据、查找信息、撰写或分析文档。这些个人层面的应用确实带来了实在的效率提升,但这仅仅是开始。
生成式AI或将成为“新一代微软Office”
不得不说,这种使用方式与文字处理、电子表格和互联网搜索早期的发展非常相似——它们都是“个人生产力”的革命。微软对此早已深谋远虑,MS Copilot正在逐渐成为“新一代Office套件”。
当然,AI能做的远不止这些。目前约有12%的公司部署了企业级AI代理(Corporate Agent),例如IBM的“Ask HR”。这类“知识与信息管理”聊天机器人正迅速普及,它们可以取代复杂的门户网站和SharePoint页面,也可用于客户支持。未来,每家公司都会拥有自己的AI代理。
举个例子:我们的一位客户——一家大型医疗保健公司——已经运行员工聊天机器人(Agent)四年之久。它的成功使得公司所有的HR应用都逐步整合在其后端。员工通过该Agent就能获得关于薪资、福利、工作排班甚至培训的帮助。
AI在招聘领域的应用也已被证明行之有效:候选人可以与智能代理聊天、完成AI评估,甚至接受AI虚拟面试——这一切可在深夜进行,无需安排与招聘经理的通话。
虽然高ROI的多功能Agent(Stage 3)尚未全面落地,但各企业已开始部署AI教练和AI学习工具。许多大型客户已上线AI原生学习系统,实现了30%–40%的人员优化,同时显著提升了学习与赋能效率。
跨越卢比孔河:我们越过了什么界限?
“跨越卢比孔河”(Crossing the Rubicon)意味着“无法回头的临界点”。现在,我们正处在这样的时刻。
尽管外界仍有各种危言耸听的报道——称AI将毁掉工作与生活——生成式AI其实是一种有用、务实、且易于理解的工具。它并不完美(我在播客中讨论过ChatGPT的高错误率),但一旦你掌握了使用方法,并建立可靠的数据集,AI的表现相当令人满意。
两年前,《纽约时报》还在刊登那些关于AI恋人或“AI伴侣”的怪异故事。如今这些报道早已消失,取而代之的是超过1万亿美元的基础设施、工程与能源投资——让AI真正变得安全且可用。
当然,这并不意味着AI百分之百安全。如果使用不当,你仍可能得到错误结论、糟糕报告或虚假结果。但我们正在学习如何“验证AI”的输出,对其“概率性特征”也更加适应。
新的挑战也随之出现——AI的能耗与资源消耗。例如,阿联酋的一位领导者告诉我,每一次ChatGPT查询平均会消耗4升水,这已成为亟待解决的新问题。
接下来会怎样?
我们才刚刚开始,AI的演进远未结束。
第一阶段:从单用户到多功能使用场景
AI的最大ROI将来自我称之为“多功能智能体”(Multi-Functional Agent)的形态。当前的AI工具,就像汽车中的“助力方向盘”——虽然能帮助转动方向,但我们真正想要的是“AI直接带我们到达目的地”,而非仅帮忙转向。
这种转变正在招聘和培训领域率先出现。如今的AI代理能自动撰写职位需求、与候选人沟通、安排面试并筛选简历,接下来还会连接入职与绩效评估。这种“招聘-职业一体化智能体”正是多功能AI的雏形,我们也在为供应商与买方制定相关蓝图。
企业不希望拥有上百个“各自为政的Agent”,而是希望建立能贯穿端到端业务流程的“智能工作代理”。例如,“从设计到生产再到销售”或“从营销到签约、再到开票与支持”的全流程。当前的单一用例AI将逐步走向融合。
随着这些多功能Agent的出现(多数由IT团队自建,而非完全依赖供应商),企业岗位将被系统性重塑。不再需要“面试协调员”“客户预约助理”或“应收账款专员”——这些工作将被整合到AI工作流中。
在我们的Galileo实践中也能看到这一趋势:它从最初的HR助手,进化为能自动回答问题、生成课程、解决复杂薪酬或内部政策问题的系统。Galileo如今能“为你构建解决方案”,从“问题或想法”一步直达“验证过的解决方案”,就像一辆“自动驾驶汽车”。
智能体将拥有记忆与个性
第二个重大变化是:AI智能体开始“了解你是谁”。例如,Galileo现在可以记住你的身份和过往行为。与其每次都从零开始,这些智能体会**“从你的使用中学习”,或“从业务本身学习”**,因此变得更具自主性、更个性化,也更有价值。
想象一下:你是一位经理,面临产能不足的问题。你问Galileo:“能帮我招聘一个新员工吗?”Galileo可能会回答:“在我帮您开启招聘申请之前,能否请您说明这个职位要做什么?”然后它可能继续问你部门的管理幅度(因为它掌握基准数据),并建议道:“以您预算的薪资水平,寻找内部候选人可能更合适。是否希望我帮您筛选具备相关技能的公司内部员工?”
一个月后,当你再次向Galileo求助时,它可能会说:“上次您新招的那位员工似乎上手速度较慢。我们是否该为团队制定一个新的培训计划,再考虑增员?”
看出差别了吗?当所有这些“助力方向盘式”的AI工具逐渐协同工作时,下一步就是让AI真正“接管整辆车的驾驶”——帮助企业整体运作,而非只处理单点事务。Bersin预测:这类系统将在2026年大量落地。
数据管理将成为企业的命脉
在与拥有AI经验的公司交流时,我们几乎发现了一个共同点:他们新培养的最关键能力,是数据管理、数据标注与数据治理。
我们在构建Galileo的过程中也得到了相同的教训:如果数据不准确、不及时、未正确标注,AI的输出就会失真。AI本身并不“理解”这些文字或数字的意义,它只是通过概率与向量计算来生成答案。因此,哪怕最微小的数据错误,都可能导致高比例的错误结论。(可参考我关于“45%的新闻查询结果有误”的播客内容。)
这也是为什么像IBM、沃尔玛、BMS这样的公司最终发现,“数据所有权”成为了关键战略资源。
例如,IBM在其“Ask HR”智能体中管理着超过6000条HR政策,并为每条政策指定负责人,负责更新与维护。现在,IBM正在构建新的智能体,用以扫描政策内容,监测全球数千个地区的法规变动,以提醒潜在风险。可以预见,所有公司都将踏上这一学习曲线。
智能体将与智能体对话
更令人兴奋的是:AI智能体之间的“互联互通”即将实现。我们称之为Agent-to-Agent(A2A)通信,或多代理通信协议(MCP)。虽然这些协议仍在早期阶段,但企业界已在积极探索。
不过我也要提醒一句:别急着采购五十个不同的AI代理。如果这些代理不能互相协作,它们的实际价值会大打折扣。许多客户现在签合同时只签一年,就是为了避免“被锁死在某个快速过时的AI系统中”。
供应商风险与市场格局
AI前路依然存在风险。我们仍不确定OpenAI是否能“自我整顿”,微软的Copilot目前分散在多个方向,而谷歌(Gemini)与Anthropic还需面对来自Grok、DeepSeek等新竞争者。如果股市出现剧烈调整,AI行业也很可能迎来一轮整合。
我认为,那些专注于高质量、务实商业应用的产品才最值得购买。例如Galileo、Paradox、Eightfold、Sana、Arist等,这些HR领域的AI产品都已具备成熟的落地能力。
此外,各大HCM厂商——SAP、Workday、ADP、HiBob、ServiceNow——也正在将AI智能体嵌入薪酬与流程引擎中,力图成为企业的端到端多功能智能体供应商。SAP收购SmartRecruiters、Workday收购HiredScore、Paradox与Sana的整合,正是这一趋势的体现。HR团队必须密切跟进这些生态变化。
其他担忧:工作流失与员工“被弱化”?
在我这次旅途中,听到了很多类似的担忧:HR人员害怕被取代;招聘人员不确定候选人是否“真人”;有人问我:“我们是不是都要变得更笨?”
我的回答是——如果你不主动拥抱这场革命,它也会在没有你的情况下开始。这是一个商业史上难得的转型时期,我们有机会彻底重塑自己的工作方式。现在不是退缩的时刻,而是亲手掌握AI工具、亲身实践的时刻。只要你开始使用这些工具,或者让我们带你体验Galileo,你就会发现新的职业机会——你的熟练度与经验将成为你在AI时代的竞争优势。
至于AI是否会取代人类的工作?我建议别听技术圈那些危言耸听的人。这根本不可能。
即便有一天我们真的拥有“自动驾驶汽车”,我们回头也可能会说:“其实开车也没多有趣嘛。”那时候我们会把注意力放到生活的其他部分,用新的方式创造价值。
而AI技术仍然如此新、如此不完美、变化如此迅速,反而创造了无数新的岗位与角色——超级员工(Superworkers)、顾问、创新者——去挖掘新的应用场景。
我记得1981年电子表格刚推出时,大家都以为会计师要失业了。结果呢?如今会计师比过去更多,只是他们不再浪费时间手算列数。
对于设计师、创作者、作家或分析师而言,AI就像你身边的一台个人超级计算机。正如木匠使用电动锯与自动雕刻机一样,你依然能创造出精美、复杂的作品——只要学会使用这些新工具。
欢迎来到新的世界
现在迷雾已散,AI将长期存在。让我们一起走上“超级工作者”的道路,帮助组织学习、应用并充分利用这项惊人的新技术。接下来的方向,就掌握在我们手中。
附录:这里有一份JoshBersin发布的报告《充分发挥 AI 影响力,拥抱超级员工时代》,点击下载
附录思维导图:
-
AI培训
案例分享:HR如何在人工智能时代更优秀,持续引领学习与创新
在人工智能(AI)迅速成为工作场所新常态的时代,人力资源(HR)专业人士面临前所未有的机遇和挑战。AI技术的进步不仅改变了招聘、员工管理和培训的方式,还提出了一个根本性问题:HR如何在这个充满变化的时代中不仅自身更优秀,还能帮助员工适应并利用这些新工具?
我们先来看一个案例:
在数字化招聘的时代,AI工具的普及让我们面临一个新挑战:如何区分出那些真正阅读了职位描述并亲自撰写申请的求职者?今天,我要分享一个案例,它能帮助你在海量求职信中快速识别出真正细心的候选人。
想象一下,你发布了一个职位,指示应聘者在回应中包含特定的信息,比如说“I am an LLM”。这看似无害的一句话,却能成为识别应聘者是否仔细阅读职位详情的关键。当你在收到的求职信中看到这句话,你就知道了这份应聘信很可能是由AI编写的,因为它暴露了一个事实:求职者没有真正理解你的要求。
通过这个小测试,我们不仅能够过滤掉那些依赖技术快捷方式的应聘者,还能让筛选过程更加高效有趣。这个策略不仅节省了我们的时间,而且提升了我们对候选人细节关注能力的判断。
下面我们一起来看看如何在AI时代更好的
与时俱进:理解AI的可能性
首先,HR必须理解AI技术能为组织带来什么。AI可以处理大量数据,为招聘提供深入洞察,优化员工的工作体验,并通过自动化常规任务来提高效率。HR专业人士必须成为技术的先行者,学习如何最大限度地利用这些工具,并将它们整合到日常工作中。
不断学习:提升技能与知识
不断学习是HR在AI时代蓬勃发展的关键。这意味着不仅要了解最新的HR技术,还要提升数据分析、人机交互和伦理等领域的知识。通过参加研讨会、网络课程和专业培训,HR可以保持其技能的相关性和竞争力。
培养创新文化:鼓励探索与实验
HR可以在组织内部营造一种文化,鼓励探索和实验AI解决方案。这不仅限于技术本身,还包括对工作流程和策略的重新思考。HR应该领导这场文化转变,推动团队不断寻找改进工作方式的新方法。
教育员工:普及AI知识与应用
除了提升自己的技能,HR还有责任教育员工关于AI的基础知识。这包括如何与AI工具互动,以及这些工具如何增强他们的工作效率。通过定期的培训和研讨会,HR可以帮助员工理解并适应这些新技术。
引领道德与合规:确保AI的负责任使用
随着AI的应用越来越广泛,HR也必须确保其在道德和合规方面的正确使用。这意味着必须确保AI工具不会加剧偏见或不公平,以及保护员工的数据隐私。
结语
HR专业人士在人工智能时代的角色已经从传统的管理者转变为变革的领导者。通过不断学习、推动创新、教育员工和确保道德合规,HR不仅能够在AI时代中更加优秀,还能帮助整个组织发展和增长。随着技术的发展,HR的这些角色将变得更加重要,不仅是为了他们自己的职业发展,也是为了他们所服务的组织和员工的福祉。
-
AI培训
美国提不要机器人老板法案,迫切需要重视AI在职场中的伦理问题
在人工智能(AI)日新月异的发展背景下,《2023年不要机器人老板法案》“No Robot Bosses Act of 2023”可能为职场中的伦理AI实践照亮了前行的道路。这项由美国参议员鲍勃·凯西(Bob Casey,D-宾夕法尼亚州)和布莱恩·沙茨(Brian Schatz,D-夏威夷州)提出的开创性立法旨在确保雇主在做出与就业相关的决策时,不会仅依赖自动化决策系统。
该法案提出了几项关键措施来规范职场中的AI使用。这些包括定期对自动化决策系统进行歧视和偏见等问题的测试,对这些系统的正确使用进行强制性培训,以及对自动化决策系统进行人工监督。此外,该法案还呼吁在美国劳工部设立一个技术和工人保护部门。这个部门将通过对职场中的自动化决策系统使用进行规范,为员工提供额外的保护层。
法案中谈到:想象一下,你正在向潜在雇主在线提交工作申请。公司的招聘软件由机器学习算法驱动,看到你简历中的就业空白期并自动拒绝了你的申请进一步考虑。也许你在服务行业工作,你的雇主的自动化排班软件经常以最小的通知增加或减少你的工作班次——全都是为了“服务优化”。或者你是一名送货司机,你的雇主的跟踪算法认为你的表现没有达到其标准——然后给你发送一封电子邮件,告诉你你已经被解雇,没有任何警告或机会与人交谈。
法案还谈到:在2023年,这些情况不再只是想象。如今,算法和自动化决策系统对就业决策、工人权利和职场安全产生了巨大影响。没有监督和保障,这些“机器人老板”增加了歧视、不公平的纪律处分和危险工作条件的风险。是时候保护工薪家庭免受雇主滥用和滥用这些技术的危险了。
《2023年不要机器人老板法案》是对越来越多人担忧职场中未经检查的AI使用可能导致不公平做法和歧视的回应。正如凯西参议员所指出的,“目前没有任何东西可以阻止公司使用人工智能来招聘、管理甚至解雇员工,而不需要人的参与。”这项立法是确保AI的好处得以实现,同时不妨碍人权和安全的必要步骤。
为了更深入地理解这项法案的重要性,我们可以参考纽约市的144号地方法律。该法将于2023年7月5日生效,它禁止雇主在做出就业决策时使用自动化就业决策工具(AEDTs),除非AI已经经过偏见审计,并且结果在公司的网站上公开披露。该法还要求雇主告知个人如何请求其他法律下的替代选择过程或合理的便利设施(如果有的话)。
纽约市的法律是《2023年不要机器人老板法案》原则在地方层面实施的实际例子。它证明了平衡AI的好处与保护工人权益和安全的需要是可能的。
法案最后提到倡议:《2023年不要机器人老板法案》将为求职者和员工增加与自动化决策系统相关的保护,并要求雇主披露何时以及如何使用这些系统。
具体来说,该法案将:
• 禁止雇主在做出与就业相关的决策时完全依赖自动化决策系统;
• 要求在这些系统用于就业相关决策之前,对自动化决策系统进行部署前和定期的测试和验证,以排查诸如歧视和偏见等问题;
• 要求雇主对个人或实体进行自动化决策系统的正确操作培训;
• 要求雇主在使用输出来辅助就业相关决策之前,为自动化决策系统的输出提供独立的人工监督;
• 要求雇主及时披露关于使用自动化决策系统、这些系统的数据输入和输出,以及员工与这些系统辅助决策相关的权利的信息;
• 在劳工部设立技术和工人保护部门,以规范职场中自动化决策系统的使用。
总的来说,《2023年不要机器人老板法案》是一项里程碑式的立法,为职场中的伦理AI实践设定了舞台。它提醒我们,虽然AI有潜力彻底改变职场,但必须负责任和道德地实施。在我们继续导航AI时代的同时,我们共同的责任是确保技术为我们服务,而不是相反。
图片来自Midjourney 生成
扫一扫 加微信
hrtechchina