• AI能力模型
    HR的影子AI行动指南: 从隐蔽使用到负责任 AI 的组织能力建设 HRTech概述:影子AI (Shadow AI) 正在成为企业的真实现状:员工早已在日常工作中使用 AI,但往往“不敢说、不敢公开”。这不是违规,而是组织真实需求的外露,是基层对效率的自主追求。影子 AI 暴露的是心理安全不足、工具体验落差,以及组织学习断裂。HR 的角色正在发生改变:不再只是制度执行者,而是 AI 文化的塑造者、心理安全的设计者、治理框架的共同构建者。四步框架——心理安全、显性化、白化机制、Responsible AI 建设——将帮助企业把“地下创新”转化为组织能力。谁能更早拥抱 Shadow AI,谁就能在下一轮 AI 浪潮中领先。 一、当 AI 早已走进一线,却还停留在管理者PPT里 在很多企业的管理层会议上,AI 依然是战略汇报中的一个章节,是技术团队路演中的一个亮点,是外部大会上反复出现的关键词;但在员工的真实日常工作中,AI 早已“悄悄上岗”。销售用 ChatGPT 改邮件、运营用生成式模型写文案、HR 自己也可能用 AI 写 JD、起绩效评语、梳理政策……只是,这一切往往都发生在“未报备、未批准、未纳管”的状态下。这就是所谓的 Shadow AI(影子 AI):员工在未正式获批、未纳入官方工具体系的前提下,自行使用各类 AI 工具完成工作目标。现有研究与市场观察都在指向同一个事实:员工实际使用 AI 的比例,远高于企业管理层的认知。而且,越是高绩效、越接近业务一线的员工,越有动力去寻找更高效的工具,也越可能成为影子 AI 的重度用户。对 HR 管理者而言,Shadow AI 不仅是一个技术或安全问题,更是一个组织问题与文化问题。如果只是简单将其视为“违规操作”,采取封堵、禁用、隔离等手段,只会把本就隐蔽的使用推向更地下的角落,让企业既承担风险,又完全丧失学习机会。本指南的出发点,是从 HRTech 与组织文化的视角,帮助 HR 管理者把 Shadow AI 从“地下水”引向“有渠道的水利系统”,把分散、隐蔽的个体实验,转化为安全、可控、可持续的 Responsible AI(负责任 AI)能力。 二、重新理解 Shadow AI:从“违规现象”到“欲望路径(Desire Path)” 如果从传统 IT 管理的视角,Shadow AI 与 Shadow IT 一样,是“未授权应用”,理应被列入风险清单。但如果我们转换视角,会看到另一层含义:Shadow AI 更像是校园里的“欲望小路(Desire Path)”——学校规划了标准道路,然而师生会按照自己的效率和习惯,踩出一条更加真实的路径;这条路径,往往比设计者想象的要合理得多。在企业中,Shadow AI 的出现,首先说明官方工具与流程无法完全满足一线需求。员工之所以绕过内部系统使用外部 AI 工具,往往不是为了规避规则,而是为了完成目标、节省时间,甚至是为了弥补现有系统的不足。其次,Shadow AI 折射出一种“不敢公开的创新”。许多员工其实已经在积累自己的提示词库、工作流模板和小型自动化流程,但出于对“被认为偷懒”“被质疑是否算自己的贡献”“被误读为岗位可被替代”的担心,他们选择不公开、不分享、不沉淀。换句话说,Shadow AI 是员工用脚投票之后留下的轨迹,是组织真实 AI 需求和真实效率突破的“热力地图”。如果企业只是从合规层面、技术控制层面去理解 Shadow AI,就会错过它作为“需求信号”和“创新线索”的价值。这也是 HR 需要主动介入的关键原因:如何将这种制度外的创新、隐蔽的效率实践,转化为可治理、可复制的组织能力。 三、Shadow AI 暴露的三大管理缺口:心理安全、工具落差与学习断裂 要把 Shadow AI 当成机会,首先要承认它是组织管理上的一面镜子。当前大量影子 AI 的存在,至少揭示了三类典型缺口。第一,AI 心理安全感缺失。员工不敢公开承认自己使用 AI,是因为在当前文化氛围下,“用 AI 完成工作”并未被正式定义为一种被鼓励的能力,反而可能被解读为“偷懒”“不够专业”,甚至被视为未来裁员时“可以被机器人替代”的证据。如果没有心理安全感,员工就不会主动说明“这里我用到了 AI”,更不会愿意把自己的 AI 工作流分享给组织,这直接阻断了企业学习的可能性。第二,官方工具与真实需求之间存在明显落差。很多企业已经在搭建内部大模型平台或 AI 助手,但常见问题包括响应缓慢、调用复杂、上下文受限、接入场景单一,甚至与员工日常使用的应用脱节。一线员工用外部 GPT 等工具可以在 30 秒完成的任务,内部工具可能需要数分钟甚至更长。一旦体验差距过大,Shadow AI 就几乎不可避免。第三,组织学习与治理机制断裂。当前不少企业对 AI 的管理仍停留在“政策下载”“使用禁令”“统一培训”的层面,缺少一个真正面向业务的、可持续的 AI 学习和治理循环:哪里出现了新的 AI 工作流,如何被发现、如何被评估、如何被白化(纳入官方)、如何被复制推广。结果是,员工的创造性实践被锁在个体层面,组织既看不到风险,也看不到机会。 四、HR 在 Shadow AI 中的独特角色:文化定义者与行为架构师 在 AI 治理的角色分工中,IT 负责技术护栏和安全架构,高管层负责战略方向与问责机制,而 HR 的核心职责在于“人”和“行为”。这意味着,HR 在 Shadow AI 问题上的角色,不是简单地转发 IT 的禁用公告,而是要通过文化、制度、激励与能力建设,把一个隐蔽、分散、个体化的现象,转化为公开的、可讨论的、可治理的集体实践。其一,HR 是 AI 心理安全感的主要设计者。心理安全感不是一句口号,而是涉及绩效评估逻辑、能力模型定义、晋升标准、沟通语境的一整套机制。HR 需要帮助管理层明确:使用 AI 是一种能力,不是作弊;公开分享 AI 使用经验,是一种贡献,而不是可疑行为。只有这样,员工才会相信“说真话是安全的”,AI 使用才能从影子状态走向阳光之下。其二,HR 是 AI 文化的塑造者。HR 可以引导企业从“工具导向”转向“文化导向”:与其问“我们有没有自己的大模型”,不如问“我们的员工能不能自然地把 AI 作为工作伙伴”。这种文化关乎是否鼓励尝试、是否允许试错、是否鼓励跨团队分享,以及是否把“AI 流畅性(AI Fluency)”写进人才画像与能力模型之中。其三,HR 是 AI 能力建设与治理框架的共同设计者。在岗位说明书、培训发展、人才盘点和组织发展项目中,HR 完全可以把“与 AI 协作的能力”“构建 AI 工作流的能力”“识别和审查 AI 输出风险的能力”作为新一代核心能力维度,并与 IT、安全、法务共同搭建 Responsible AI 的制度框架和教育体系。 五、HR Shadow AI 行动框架:从察觉现象到建立负责任 AI 体系 要从战略层面走向具体行动,HR 可以参考一个“四步式”行动框架:心理安全 → 显性化与分享 → 白化与护栏 → Responsible AI 体系化。 第一步:建立 AI 心理安全感,明确“用 AI 是被鼓励的行为”HR 需要与高管层一起,向全公司发出清晰、统一的信息:在合理边界下使用 AI,是被鼓励的;在工作中说明自己使用了 AI,不会削弱对个人能力的认可;凡是能够证明 AI 使用为业务带来实质价值的案例,都可以成为正面的组织故事。这种信息不应停留在“口头安抚”,而要落实到绩效评估标准、KPI 设定、团队例会、内部沟通中,甚至体现在领导者自身的示范行为里。只有当员工真正相信“用 AI 和说明用 AI 都是安全的”,Shadow AI 才会从“要隐藏”的状态转向“可以讨论”的状态。 第二步:建立 Shadow AI 显性化与分享机制,把个体经验变成组织资产当心理安全感初步建立后,HR 应主动设计可持续的分享机制。例如,设立跨部门 AI 使用经验分享会或内部“AI Demo Day”,开设专门的 Slack/飞书频道收集高效提示词与工作流,鼓励团队每季度提交一到两个“AI 提效案例”。同时,HR 可以配合设立激励机制,如“季度最佳 AI 工作流”“年度 AI 创新团队”等,以非物质荣誉与适度物质奖励相结合的方式,让员工知道:不仅可以公开,而且值得公开。在这一阶段,HR 的重点不在于立刻统一工具,而在于尽量全面地看见:哪些岗位、哪些业务场景、哪些流程已经自然地被 AI 改造;在哪些地方,Shadow AI 已经成为事实标准。这些信息会成为后续治理和产品化的坚实基础。 第三步:与 IT 共建“白化机制”和技术护栏,从影子实践走向合规落地当大量 Shadow AI 使用场景被可视化之后,HR 应与 IT、安全、法务组成联合治理小组,对这些场景进行分级评估:哪些场景风险较低,可以通过简单规范直接纳入官方工具;哪些场景涉及敏感数据,需要通过技术手段(如脱敏、私有化部署、安全网关等)重构方案;哪些场景暂时不宜使用外部公共模型,需要专门设计替代路径。所谓“白化机制”,并不等同于“一刀切审批”,而是一个将影子实践纳入正式工具链与风控体系的过程。例如,将员工实践中最常用的提示词整理成组织级 Prompt Library,将高频工作流固化为一键调用的自动化模板,将临时性质的“复制粘贴+外部网站”操作替换为安全 API 或内部模型调用。HR 在此过程中的角色,是确保白化过程不压制真实需求,避免以管理的名义牺牲体验,从而促使员工再次转向影子路径。 第四步:构建以 Responsible AI 为目标的治理体系,将 AI 融入人才与组织发展 当显性化、白化和护栏搭建初步完成,组织就进入了 Responsible AI(负责任 AI)的建设阶段。此时,HR 需要协同其他关键职能,搭建一个长期可运行的治理体系,而不是一次性的专项项目。在制度层面,可以明确 AI 使用政策,包括可用场景、敏感数据边界、必须进行人工复核的情形、生成内容的署名与责任划分等;在能力层面,可以将 AI 相关能力写入岗位能力模型和晋升标准,将提示词能力、AI 判断能力、工作流设计能力、风险识别能力等,作为人才发展的新维度;在教育层面,可以设计分层培训体系:对所有员工提供基础 AI 素养课程,对管理者提供“AI 驱动团队”的领导力课程,对关键岗位提供场景化的深度训练。更进一步,HR 还可以推动将 AI 相关数据纳入组织诊断与人才盘点:例如,团队内部 AI 使用质量与频率是否与业务成效相关,哪些团队在 AI 采用上明显落后,哪些岗位的任务内容已经悄然改变,需要调整职位说明与绩效权重。这些工作会让 Responsible AI 不仅停留在“安全与合规”的层面,而真正延伸到“能力与竞争力”的层面。 六、典型应用场景:从招聘到绩效,Shadow AI 如何转化为治理样板 在具体实践中,HR 可以从几个典型场景入手,将 Shadow AI 转化为治理范例。在招聘领域,许多企业已经观察到候选人利用 AI 优化简历与面试回答,同样也有招聘团队使用 AI 来撰写 JD、筛选简历、生成面试问题。HR 可以先通过工作坊收集招聘团队真实使用 AI 的方式,识别其中哪些做法有助于提高效率与候选人体验,哪些做法可能带来偏见或不透明的风险。随后,通过明确政策与技术手段,构建一个既利用 AI 增效,又能保证公平与可解释性的招聘流程,并在内部公开这些标准,以减少阴影和猜忌。在绩效与评价场景中,部分管理者可能已经使用 AI 来草拟绩效评语或反馈。HR 不应简单禁止,而应明确:AI 可以作为辅助撰写工具,但不可以替代管理者的主观判断;最终的评语内容必须由管理者审核并承担责任。同时,HR 可以为管理者提供“如何借助 AI 写出更清晰、更具建设性的反馈”的培训,将 Shadow AI 使用引导到有益和规范的方向。在日常运营和知识管理中,员工可能已经在用 AI 整理会议纪要、编写操作手册、归纳流程和 FAQ。HR 完全可以将这些实践纳入知识管理体系:通过统一工具和流程,确保重要内容可以被沉淀、可被搜索、可被版本管理;同时,对不同类型内容设置清晰的访问与保密等级,避免知识资产流失或误用。 七、从 Shadow AI 到 Responsible AI 的飞轮 从 HR 的视角,Shadow AI 不是短期要消灭的现象,而是长期需要理解和引导的“地下创新能量”。一味压制,只会带来更隐蔽的使用与更高的不可控风险;积极引导,则可以形成一个健康的飞轮:员工自发实验 → 组织建立心理安全与分享机制 → 高价值实践被识别并白化 → 在治理框架下标准化与规模化 → 反馈到文化与能力体系 → 刺激下一轮更高质量的实践。在这一过程中,HR 的角色正在发生根本变化:不再只是制度的执行者,而是 AI 文化的设计者、AI 能力模型的定义者、跨职能治理框架的共同架构者。那些能够主动拥抱 Shadow AI、从中提炼出组织机会并搭建 Responsible AI 体系的 HR 团队,将为企业赢得的不只是效率,还有在下一轮技术周期中持续演进的能力。当我们不再只把 Shadow AI 看成“要被消灭的影子”,而是把它视为“正在书写中的真实 AI 采用路线图”,HR 才真正有机会站到 AI 治理的前台,成为组织转型的关键推动者,而不是被动跟随者。 最后,HRTechChina在2024年就发起推动HR工作中实践负责任AI的倡议(简称RAIHR), 我们呼吁所有的人力资源行业同仁一同参与,共同构建和推广RAIHR的理念,RAIHR框架包含六个关键方面:透明性、公平性、隐私性、安全性、道德性和持续性。我们倡议每一位HR专业人士在其企业内部积极主导RAIHR的实施,并鼓励HR科技产品的开发和使用都围绕这一框架展开,以实现真正的可持续发展!我们更相信RAIHR是所有参与者和倡导者的未来关键竞争优势。 Responsible AI in HR(RAIHR) Responsible AI in HR(RAIHR)是指在HR实践中的AI应用遵循高标准的道德和透明性原则,确保AI决策过程公开、可审查,并且对所有利益相关者公正无偏。 这包括在招聘、员工发展、绩效管理等HR功能中,AI技术的使用既促进了工作效率,也增强了员工的工作体验和满意度。
    AI能力模型
    2025年12月07日