• 人机协作
    人工智能(AI)有7种办法改变未来的工作场所? 在未来五到十年内,你的工作场所将与从前大不相同。由于人工智能、物联网和机器人等技术的出现,我们的工作将发生巨大的变化。未来的工作将带来巨大的机遇,但也会使组织面临很多挑战。它将要求员工和管理层适应并更智能地工作。人工智能将增加你的工作,物联网将为你提供详细的见解,机器人技术将取代许多工作。 在未来十年,你的工作场所将被数据化和数字化。数字化是指将信息转换为数字格式,例如将音乐转换为MP3文件,将照片转换为JPEG,将文本转换为HTML,将模拟视频转换为YouTube视频。这样做将成倍地增加你的可用数据。因此,数字化意味着以数字形式捕捉人类的想法,以便传输、操作、重新使用和分析。 另一方面,数据化是指将模拟流程和客户接触点变成数字流程和数字客户接触点。数据化是使商业以数据驱动的过程--通过将社会行动转化为量化的数据。它涉及到使用连接设备从各种来源和流程中收集(新的)数据,或创建详细的客户档案。 使你的工作数据化,首先要使你的办公室、你的工作场所、你的流程和你的产品智能化。这将使以前 "看不见 "的过程可以被追踪,从而对它们进行监测、分析和优化。由于传感器的成本降低,低成本带宽的增加,云计算和处理能力的廉价供应以及大量连接设备的出现,你能够更容易且低成本地在不同的流程、产品和工作场所一致和普遍地捕获数据。数据化和数字化是未来工作的催化剂。 因此,没有数据,就没有工作的未来。让我们看看新兴技术将如何影响未来的工作场所。 1.寻找、雇用和留住人才 人工智能是改善你的招聘过程的完美技术。你可以利用这项技术完成“大海捞针”,通过分析数以百万计的社交资料,数以千计的简历,快速检测出潜在的候选人名单。人工智能可以自动与这些候选人进行互动,以一种引人入胜的方式选择一系列最佳候选人。Arya公司是为组织提供智能驱动的人才招聘的公司之一。 一旦你确定了一系列候选人,或者有一大群候选人对工作申请作出回应,你就可以使用人工智能来协助选择适合你公司的候选人。目前有几十种由人工智能驱动的工具,可以协助招聘人员雇用(远程)工人。你可以使用人工智能来评估候选人的技能、个性,甚至是组织适应性。例如,Filtered公司为数据科学家和工程师提供评估。每个评估都是使用人工智能进行分析。面部识别有助于检测作弊行为,结果在进入收件箱之前就被过滤掉了,在招聘最佳工程师时为招聘者节省了宝贵时间。 面部识别是招聘人员越来越多地用于评估候选人的技术之一。包括 Vodafone、新加坡航空公司和联合利华在内的公司通过用人工智能取代人类招聘人员,每年节省数百万美元。由于HireVue开发的技术,这些公司可以在更短的时间内筛选更多的候选人,从而为工作找到更好的人选。 2.员工之间的协作 在未来的组织中,人类和机器的合作将越来越多。根据 Accenture的研究,在未来几年,人机协作将使生产力和收入增加38%。三分之二的企业领导人认为,这种人机协作将有助于更快、更有效地实现战略重点。当机器和人类协作时,结果是积极的。 特别是对于大型组织来说,人工智能将更容易使在地理上分散的员工之间捕捉、寻找、分享和维护知识。对于大多数组织来说,捕获和分享知识一直不是问题。有许多可用的工具可以做到这一点,例如 wiki 和 Intranet。然而,组织越大,为合适的员工找到合适的知识就越困难。这就是人工智能发挥作用的地方。 语义搜索和自然语言处理将使人们更容易找到正确的知识。与谷歌类似,他们最近更新了他们的搜索算法,以更好地理解更复杂的搜索查询,组织可以使用人工智能更快地直观地找到正确的信息。 人工智能还可以帮助连接不同但相关的数据源,使你的知识库保持最新,并提供重要的信息指标,帮助你的员工和管理层更有效地共同工作。员工越是能找到正确的知识,合作就越容易。 人工智能在组织内的另一个应用是内部使用的聊天机器人。公司ServiceNow开发了一个虚拟代理平台,帮助员工解决人力资源的请求和查询。通过向人工智能代理提供足够的数据源,聊天机器人能够理解上下文,并能够快速正确地回答问题。 3.智能远程工作 人工智能可以用来改善远程工作者的招聘,但它也可以用来改善远程工作本身。远程人工智能将帮助远程工作者节省大量的时间,将他们通常需要手动完成的任务自动化。 此外,人工智能使远程机器人成为可能,这指的是机器被人类远程操作。这些半自主的机器人可以从远处控制,并可以完全重塑工作空间,特别是当与虚拟现实相结合时。远程机器人可以使更多的员工在家里工作,而不是目前所能做到的。例如,一个机械工程师可以操作机器人,在不离开家庭办公室的情况下修复地下管道的泄漏。再进一步说,由于VR的存在,管理层可以进行虚拟的 "面对面 "会议,而每个人都在世界的其他地方。 在未来几年,人工智能将使远程劳动力的效率更高,并大大增加员工在工作和生活上的平衡。 4.优化你的工作场所 任何流程、设备、基础设施或客户接触点都可以通过包括连接到互联网的传感器而变得智能。随着可用的连接设备的数量成倍增长,这比以前更容易。在不久的将来,传感器和连接设备将导致智能家居、智能办公室和智能城市的出现。因此,员工应该为智能工作场所做好准备,人工智能将创造一个个性化的员工体验。 2015年,当时世界上最聪明的建筑开业了。阿姆斯特丹的The Edge。这座大楼知道谁在大楼里,他们的喜好是什么,以及你喜欢怎样的咖啡。 从那时起,由于传感器、机器学习和无线(虚拟)信标技术,数字工作场所正变得越来越智能。传感器和人工智能可以改善照明控制、房间控制、空间管理和优化整体设施管理。智能工作场所的目标是通过为员工创造最理想的、个性化的工作场所来提高生产力。 5.领导和文化 你的文化需要改变,成为一种数据驱动的文化,在这种文化中,可以实时采取行动,决策是自动化的,员工被赋予权力。人工智能改善了你整个组织的决策,并帮助你了解哪些机会是最好抓住的。在不久的将来,人工智能将促进先进的自动化分析,它将用自动化决策取代人类决策的需要。 因此,人工智能将利用描述性、预测性和规定性分析为你的管理层和员工提供先进的洞察力。这意味着,基于经验和专业知识的传统决策方式被转换为数据驱动的决策。当组织为更多的人提供获取知识的机会时,权力就会被更平等地分配,使员工在组织内获得权力。这种权力的转移是充分受益于大数据分析的必要条件,它将大大改变你的文化。 6.生产力 当人工智能增强人类的工作能力时,生产力会增加。机器人不会生病,不需要休息,可以全天候工作。因此,那些将人工智能纳入其工作空间的公司,其生产力和收入都得到了显著的提升。人工智能可以处理平凡和单调的任务,而人类可以专注于更复杂的问题。因此,一个利用人工智能的组织将变得更加人性化。 例如,由人工智能驱动的聊天机器人可以为你的客户提供无缝体验,即时解决最基本的问题。或者人工智能可以分析销售电话并为销售经理提供实时提示,以改善与客户的沟通。公司Chorus帮助从对话中释放隐藏的洞察力,以完成更多的交易。 如果组织成功实施人工智能,那些参与的利益相关者(人类和人工)之间的新合作方式将确保生产力的持续增长。 7.培训和发展 最后,但肯定不是最不重要的,是人工智能改进的培训和发展。企业培训在竞争激烈的市场中变得越来越重要,员工希望不断发展更好的技能。个性化的培训和发展计划无疑可以帮助你留住员工。 聊天机器人可以在正确的时间点为正确的客户提供微学习课程。正如Hodges-Mace公司的学习和发展部主任Miguel Caraballo所说:"想象一下,你的新秀销售人员即将拜访客户。当她把车开进停车场时,公司的学习机器人会在她的手机上显示一个关于积极的第一印象的微学习课程,以及潜在客户的 "关于我们 "页面的链接和她的经理的最后辅导笔记。现在这是一个个性化的学习体验"。 此外,与人工智能在招聘过程中分析评估的方式类似,人工智能可以分析培训结果,并根据缺失的技能提供个性化的培训方案。Hive Learning公司利用人工智能帮助员工更好、更快、更有效地学习。该公司专注于移动优先、点对点的学习,人工智能帮助推动行为改变。 未来的工作将是不同的。 未来的工作将更先进、更高效、更有生产力,希望也更人性化。在今天的组织中,员工必须处理大量的行政任务和官僚程序。然而,在明天的组织中,这些任务和流程将由人工智能来管理。人类和人工智能将一起工作。从而增强人类的能力,消除平凡的任务。 人工智能将使越来越多的任务自动化。它将颠覆、增强和改善许多现有的工作流程。那些在工作场所适应和接受人工智能的组织将变得更有效率,提高生产力,并变得更加人性化。然而,那些将忽视人工智能的组织或许将前景堪忧。   作者:Mark van Rijmenam
    人机协作
    2022年02月27日
  • 人机协作
    埃森哲技术展望2020:人与技术 技术已经融入人们工作与生活的方方面面。而那些能够从人性出发,用技术构建深度信任关系,同时践行社会承诺的企业将收获新的发展机遇。 在此次战“疫”过程中,技术无疑已经成为人类的重要帮手。比如,疫情动态地图让信息透明;机器人减轻医护压力,减少人际接触;无人机查找隐患,空投口罩;技术创新让远程办公、教学不再是难事······这些产品和服务体现了“技术为人”的重要意义。埃森哲最新发布的《技术展望2020》报告更深刻地解析了技术与人的关系。 每年春天,埃森哲都会发布技术展望报告,预测未来三年内将重新定义企业发展战略的关键技术趋势。今年是这一报告发布的第二十个年头,主题为“新数字时代的人与技术:企业如何破解技术冲突困局”。报告指出,要在新数字化时代保持竞争力,企业需要肩负起社会责任,充分平衡客户和员工的价值及期望,打破单一由业务价值驱动的增长模式,树立多赢价值观。 埃森哲首席技术与创新官杜保洛(Paul Daugherty)介绍《技术展望2020》 埃森哲首席技术与创新官杜保洛(Paul Daugherty)表示:“尽管技术的发展前景大好,但企业不能在数字化转型时一味追求技术。企业创造数字产品和提供数字服务时要充分考虑到对人、组织和社会造成的影响。如今,用户期望、技术潜力和商业目标之间的不平衡正在引发一场技术冲突,企业领导力亟待转变。企业必须以信任为基石,重新审视原有的商业和技术模式,重塑竞争和增长的基本面。”   新发现:“技术冲突”制约企业发展 埃森哲调研了包括323位中国企业高管在内的全球6,000多名业务和信息技术高层管理者,以及2,000名全球消费者。有89%的受访中国企业高管认为,技术已经成为打造用户体验不可或缺的一部分。同样,有89%的中国消费者认为,未来三年内,他们与技术的关系将变得愈加紧密。 然而,另一项埃森哲调研显示,尽管企业大规模投资新兴技术,但只有三成的中国企业对其技术投资回报满意,其根本原因是传统的企业系统僵化,难以支撑数字时代的创新。因此,企业旧模式与人们新需求的矛盾造成了“技术冲突”(tech-clash)。企业当前面临的挑战是:如何以人为中心对业务和技术模式进行根本性再思考和彻底性再设计,来满足人们对技术日益增长的需求和期望? 埃森哲《技术展望2020》报告认为,当数字化从趋势成为常态时,早期的数字化实践已不再具有示范效应。在商业全面数字化的新十年,要想充分发挥数字技术的效力,企业必须转变新思维,采取新方法,重新定义人与技术的关系。   新方向:五大技术趋势,帮助企业重塑增长 埃森哲《技术展望2020》指出,如不改变现有模式,企业失去的不仅仅是客户和员工的认可,更可能彻底丧失未来创新和增长的潜能。本年度报告揭示了五大重要趋势,帮助企业面向新的技术协作模式,与各方建立更牢固、更互信的关系,破解技术冲突困局。 1.我体验我做主,让用户掌控个性化主权 多年来,企业一直追求通过个性化产品和服务来提升竞争力。而面对个性化产品和服务,用户更关注的是个性化体验的设计过程和控制权。领军企业已经意识到,让用户共同参与体验设计,将是其与用户建立长期互利互信的伙伴关系、提升用户忠诚度的绝佳机遇。 因此,在设计和更新体验时,这些企业打破了以往主观单向的体验设计方式,而是把主动权和可能性交给用户,与用户合力打造体验,充分强调用户在这一过程中的突出位置。未来,5G和增强现实等新兴技术还将支持企业在产品和服务的整个生命周期中随时随地交付定制体验。 近九成(89%)的受访中国企业高管认为,通过让用户共同参与体验设计,与其建立长期伙伴关系将是未来十年的制胜之道。 2.人工智能与我,人机协作重塑业务模式 在新数字时代,人工智能将让企业创新跑出加速度。人工智能已经从执行简单任务的自动化操作升级成为与人类互动的强大协作工具。领先企业已不再将人工智能视为简单的技术工具,而是成为整个组织的变革引擎。未来,企业需要以人机协作为核心,有效地运用工具和改进方法,帮助人与机器更好地相互理解及互动。 自然语言处理技术提高了机器理解书面和口头文字的能力;扩展现实和计算机视觉的进步,可帮助机器准确识别人们周边的实体环境;而可解释的人工智能正形成闭环,使人们明确系统做出决策的思路。在人机协作模式下,从部门架构、产品设计,一直到员工的雇用和培训,企业将对业务进行彻底的重构。 目前,有55%的中国企业表示,会在包容性设计或以人为本的原则下来开展人机协作。 3.智能产品困境,交付长期体验而非硬件 随着企业生产更多以体验为导向、具备升级功能的产品,它们也面临着新的困境。这些智能产品虽然能够持续与用户互动,并帮助企业响应不断变化的需求,但是它们亦可能使人们因频繁变化而感到困扰和烦恼。人们不确定下一次系统更新为设备注入的究竟是令人兴奋的新功能、关键的安全补丁、还是不希望出现的设计更改。 攻克这一难题的关键在于企业要正视产品所有权,用户拥有物理设备,而企业管理着数字终端,拥有使产品更富价值的部分所有权。企业应将痛点转化为机遇,通过提供长期的体验,而非产品本身,打造全新的企业与用户合作关系,使智能产品的价值和效用随着时间推移不断增长。 有82%的中国企业高管表示,未来三年,企业的智能互联产品和服务将加大更新迭代的频率和幅度。 4.机器人总动员,突破壁垒拓展全新机遇 多年来,机器人有力地帮助着企业降低成本、提高生产率并加强分析能力,但这些效益很大程度上局限于产品制造等个别行业。如今,随着机器人、传感器、语音识别和计算机视觉等技术的进步、以及硬件成本的不断下降,机器人应用走出了工厂车间,在各行各业全面开花。 新的应用模式将促进企业与消费者的互动、数据收集和品牌宣传,从而将数字世界的智能推向实体世界,并且拓展新的业务领域。未来,机器人的广泛普及将成为新数字时代业务增长和价值创造的重要驱动力。 对于机器人的普及应用,消费者态度不一。超过六成的受访中国消费者表示,机器人将使生活更加便捷、高效和有趣。但同时,也有31%的受访者表示,如何与机器人协作将是一个严峻的挑战。5.培育创新基因,建立持续发展的恒动力 成熟的数字技术、科技进步和DARQ技术(分布式账本、人工智能、泛现实和量子计算)是支持企业持续创新的三大“基石”。DARQ技术可以加快企业应用科技手段的进度;科技进步能帮助数字化企业破解更宏大的挑战;而成熟的数字技术正在现实环境中,支持对DARQ技术的尝试,三者相辅相成,形成企业独特的创新基因结构。企业要充分把握当前的关键机遇,培育自身技术应用能力,构建生态系统,营造持续创新文化。四分之三(75%)的中国企业高管认为,创新的重要性日益凸显,企业需要改变创新模式,与合作伙伴和第三方组织一起构建更紧密的生态系统。 作者: 埃森哲中国来源:https://mp.weixin.qq.com/s/DJ_no1KgWGdSwSGlwKfRFw
    人机协作
    2020年02月21日
  • 人机协作
    人工智能重塑未来劳动力 By Tracy Wang 埃森哲咨询大中华区管理咨询总监 在4月20日的中国人力资源科技论坛年度论坛上,Tracy Wang女士发表了题为“人工智能重塑未来劳动力”的主题演讲,分享了埃森哲公司的最新报告,向大家展现了人工智能将如何改变未来劳动力。以下是Tracy Wang女士在本次论坛的发言内容: 大家好,我是Tracy,非常高兴今天有这个机会站在这里。我主要想和大家分享一下埃森哲公司发布的最新调查报告,报告的名字叫做“人工智能重塑未来劳动力”。这份报告包含了今年一月份埃森哲公司在瑞士的达沃斯世界论坛上发布的最新调查研究,其中应用了一些经济学的模型,预测了未来AI为企业带来的一些经济效益,并且强调了AI是如何重塑未来劳动力的。 说到这儿,其实有一个小插曲,因为我们的研究是全球性的,所以调查报告本来只有英文版。但在座的大家都是中国人,我过来分享肯定得用中文版的材料。市场部的同事和我说,自己翻译太浪费时间了,如果交给我们的翻译人员翻译成中文,大概一周的时间就可以好。我想一周的时间肯定是来不及了,我还是自己翻吧。于是我就打开了谷歌翻译,花了一两个小时就翻好了,结果我发现谷歌翻译的精准度基本达到了90%以上,剩下的一些语法错误,只需要我再稍微做一些语言润色。 这个事情说明什么,在翻译这个领域,AI已经颠覆了很多从业人员的职业生涯,很多人已经面临失业或者说转型的风险。 回归到今天的主题,当人工智能重塑未来劳动力的时候,你准备好应对竞争了吗?这个问题留给大家在今天的演讲过程中思考。AI现在这么火,大多数的企业在人工智能大致处于什么样的阶段呢? 其实一般来说,企业在采用新技术的时候,大致分为三个阶段: 第一个就是教育和学习阶段; 第二个阶段就是建模和实验阶段; 第三个阶段才是大规模应用的阶段。 埃森哲的观点是,现在大多数企业实际上还是处于第二个阶段,就是建模阶段和实验阶段。他们在业务的某些领域,可以说已经成功实施了AI技术或者说人工智能技术,并且把它们用于提高生产效能,但是当他们需要更高的增长率的时候,他们必须以更加创新的方式应用人工智能。人机协作在这个时候就扮演着非常重要的角色,人机协作就是人和智能机器以不同的方式协同工作,发挥各自的优势。 很多情况下,AI可以代替人力,从事过去人们需要做的一些烦琐工作,节省大家的时间,让人们可以在更高价值的工作上花更多的时间。以客户服务为例,AI的价值在于能够理解并且迅速响应大量的客户请求。AI可以自动处理一些低级别的事件,把高级别的事件交给人类处理,人类就可以花多一点的时间在高优先级的事情上面,更好的改善客户关系。 还有另外一个模式,人和人工智能可以在某些生产流程中进行无缝衔接,比如说宝马工厂首创的协同机器人模式,把人和人工智能在工业生产过程当中,一步一步交织在一起,第一步是机器人完成,第二步第三步交给人类来完成,这个过程当中实现了生产效率的提升。 另外一个例子就是设计领域。现在出现了很多新的设计软件,可以通过机器学习的方式可以自动生成设计理念,设计专业人员通过调整或者不断地设置设计参数来优化算法,从而完成一些更加优美的设计,更加符合人类的审美观。 我们为什么觉得人机协作可以产生更大的效果或者说价值?以AI医疗为例,经过我们的研究发现:在哈佛的病理学家,他们利用AI的技术能够更精准预测乳腺癌的细胞。不能说预测,是识别,基于图象识别的原理。他们发现AI识别的精准率达到了92%,但是人类病理学家的精准率超过了机器,达到了96%的精准率。但令人惊喜的是,如果把人类病理学家和机器AI结合在一起工作,最后得出来的精准率达到了99.5%,可见人机协作的结果超过了单独任何一方的结果。 总体来说,如果大多数企业在AI方面的投入,或者说人机协作方面的投入,能够达到世界领先水平的话,将会在未来五年增加38%的收入,而且就业率会提高大约10%。现在越来越多的企业认识到AI的价值,并且投资AI领域。 世界经济论坛和埃森哲的另一份独立研究报告指出,实际上过去的一年里,也就是2017年,企业在AI领域的投资增长了59.1%,这个数字是比较惊人的。根据我们的这份研究,有69%的企业领导人相信他们的行业将会被AI所颠覆,72%的企业领导人认为是否采用AI在竞争中能否能够脱颖而出至关重要。74%的高管认为,他们的公司将会在未来三年内,很大程度上实现任务和流程的自动化,97%的人认为他们会用AI来提升工作人员的工作效率。 现在大多数企业还是利用AI实现自动化,来提升企业效率,但是我们发现我们的观点就是说人机协作是带来更高增长的一个关键因素。报告指出,54%的领导人认为,人机协作对于实现其战略重点至关重要。61%的企业领导人预计在未来三年需要和AI合作的岗位比例将有所增加。 埃森哲的经济模型相当于是预测了AI对于企业带来的一些经济效益,跨行业来讲,刚才说到的这个数据,因为AI的投入会增加大约38%的收入,增加10%的就业率。从行业的角度讲,对于零售行业、销售品行业冲击是最大的。应用了AI技术后,这两个行业的收入增长到了51%,其次就是医疗和电信行业,分别是49%、46%。这是这些行业的就业率数据,红色的这些数据,大家可以看到,AI不但没有降低就业率,相反在各个行业都有所提升,这其实就是因为很多工作将会面临转型,而且一些新的工作需求,或者说对个人技能需求的提升。 报告指出,46%的高管说,随着机器承担例行任务,传统的工作会过时,人们会转向基于项目制的工作。所有的领导人几乎都表示说他们已经在一定程度上重新设置了公司的工作。29%的人表示,他们已经对公司的工作做出了大量的改变,工作的重新设计和改变也是惊人的。AI最大的任务就是重新设计工作,原来一些操作性的岗位会被AI替代,人类会集中在洞察性的岗位。而传统的技术型的岗位,也会被创新型的岗位所替代。 这就是一些简单的例子,经过我们的调查研究,采访了很多AI技术相关行业的从业者,他们向我们讲述了一些故事,他们的工作是怎样被AI所影响的,比如说钻井技术员,以前他们需要钻多个测试口,知道石油在哪,然后手动去准备钻头,输入正确的压力和钻头的速度。现在AI可以直接告诉人员石油的沉积,并且可以自动计算速度压力和深度。 药剂学科学家也是这样的。以前他们要梳理大量文件,以评估与药物有关的安全问题。现在AI可以自动评估风险系数,这样的话药剂学科学家可以花很多的时间在高风险的病例工作。 同理还有软件开发者,他们每周花费时间来识别新的垃圾邮件标志,并且编写垃圾邮件检测规则。现在AI可以自动识别垃圾邮件的检测规则,并且能够自动更新检测规则。这样的话,软件开发者实际上就可以花更多的时间在新的软件开发上。 航天工程师也是一样的,原来他们自己手动设计飞机组件,寻找抗压性更好、更加轻便的设计。现在AI采用生成性设计模仿大自然的进化方式,考虑数百万种可能的设计,挑选出抗压性更好,更轻便的设计。还有长途运输驾驶员,自动驾驶的出现使得驾驶员更多从事监控和优化路线方面的工作。 我们通过调查发现,非常多的员工已经迫不及待和人工智能合作。67%的员工表示,在未来的三到五年,去发展他们与AI合作的技能是非常重要的。62%的员工表示,智能技术会对他们的工作产生影响。45%的员工相信,AI会帮助他们更有效地去完成他们的工作。 但是与此同时,其实企业雇主对于这一结果可能会产生一些偏差。实际上员工对于AI的拥抱程度,可能已经超出了企业的预期。根据我们的调查发现,实际上四分之一的高管都会认为他们的公司员工实际上对AI有抵触情绪,比如可能担心工作丢失等等,员工的抵触情绪是AI在应用的一大阻碍。而只有3%的高管计划在未来的三年内,大幅增加对员工AI技能相关的一些提升,其余的97%的高管在预算上基本是持平的,或者说稍微有一些增长。 顺应人机协作或者说AI的趋势,作为企业的领导者,最重要的三个工作是什么呢? 第一个是重新定义工作; 第二个是引导员工向新的价值领域方向迁移,比如从员工思维和能力上引导; 第三是培养新技能,一会儿我会阐述哪些是未来会出现的新技能。 刚才我讲了很多工作是怎么被重新设计的,这个过程里面,创建新的岗位说明,Job Design是非常重要的,把人力从原来的职能岗位上释放出来,让企业组建基于项目制的工作方式。引导员工向开启新价值形式的领域迁移这个过程中,打造敏捷组织是非常重要的。 敏捷组织有什么特点? 第一个是流程非常灵活。第二个特点是扁平化管理,组建小规模的团队。第三个是顺应AI的管理趋势,即有灵活的组织模式来支持项目制团队,团队能够迅速组建和解散。 关于培养员工的新技能,埃森哲发现有几个角色在人机协作的过程当中会逐渐展现出来,比如说教练的角色、解释者的角色、维护者。 什么是教练呢?教练就是训练AI的人,不一定是写代码或者说编写算法的人,但是他必须懂算法,这样可以帮助AI更好的学习,更好的帮助AI识别人的面部特征,或者通过正式的工作流程的方式帮助AI进行学习,要么帮助AI融入团队和团队一起进行学习,所以说训练AI的能力是非常重要的。 第二个讲到解释者,解释者也不一定是写代码的人,但他也得懂算法。把算法结果解释给大家听,并不是每个人都懂算法,通过解释的过程,可以增强大家对角色的信心,从而增加员工和客户对于算法的信心和支持。 第三个就是维护者,维护者是什么意思呢?维护者就是保证AI在演化的过程中不能跨越人类的道德底线,或者说不加强人类的一些偏见。比如说现在有一些图片识别软件,基于机器学习的算法,很多时候是通过学习大量的图片,给图片打上标签的方式进行工作的。这里前段时间出现一些情况,比如说很多黑人图片被人工智能打上猩猩的标签,这显然会涉及种族歧视,这时候需要维护者站出来指出风险,并且优化算法,来保证不涉及到道德方面的或者说法律方面的一些风险,这几个角色在AI或者说人机协作的过程中将来演化出来的一些新的角色。 同时有一些新的能力很重要,比如说判断力,有些时候AI不可能完全替代人类做决策,当AI不能做决策和判断的时候,人类就需要去做决策,这就需要人类能够了解AI的一些局限性,知道什么时候,在什么情况下应该怎么去干预AI决策。还有包括刚才讲的训练AI的能力很重要,创建工作流程,帮助AI大量的处理数据,优化算法,更好的为人类做洞察。 还有比如说询问智能系统,首先你要懂这个算法,要懂这个系统是怎么分类这些信息的,所以你在在询问这些智能系统的时候,才能获得更有价值更有洞察力的信息。所以经过我们的研究发现,这是我们未来需要的一些新的工作技能。作为企业来讲,首先需要对这些技能优先性进行排序,然后确定目标,对企业的员工进行培训,这里面可以用到一些数字化的培训方式,比如说VR、AR来加速培训的规模和速度。 后面有一些AI应用在工业场合的一些例子,比如万豪国际酒店,它的商业模式就是采用新技术推动的模式,利用机器人欢迎客人,把物品毛巾送到客人房间,也推出了一些智能推荐系统,可以让客人产生更多的订单,并且它的AI聊天机器人,可以让顾客能够在Facebook聊天软件上自动生成订单,帮助客人节省旅行社产生的一些费用。在比利时酒店会有一个驻场的聊天机器人,会说十九种语言,帮客人做自动登记。 下一个例子就是StitchFix,这个品牌利用了AI技术,在线上服装零售领域脱颖而出。和传统销售不一样的是,他们的服装设计师,根据客户的订单和退货订单,分析客户喜好,帮助公司设计师为顾客提供更好的、定制化的服装样式。 第三个例子就是阿迪达斯的SPEEDFACTORY,这是基于本地化的理念,非常小而新的举措,目的是满足更多定制化的需求,利用了人和AI相互协作的生产流程,设计师和AI相互协作,一双定制鞋从设计到生产几天内就可以完成。这样的话把价值定位转移到了满足消费者的定制需求上,大大节省了工作效率。 最后我分享一下中国市场的数据,前面讲的是全球化的一些洞察和数据,接下来我把单独的中国市场数据拿出来,大家看看和其他国家相比,有没有一些新的发现。在调查里面,我们问到三个问题。 第一个问题是你所在的组织在未来三年内,自动化的任务和流程程度是什么样的。你会发现,74%的被采访者都会回答这个比例是高或者非常高的,但中国实际上是低于平均线的,只有56%。 第二个问题是你需要在多大程度上和智能机器一起工作,中国的平均数据是38%,大多数人都会说会花26%到50%的时间与机器进行协作。 第三个问题,你更同意下列哪个陈述,一个是智能技术将在未来三年内减少规模,另一个是AI将在未来三年为公司带来就业机会的增长。大家可以发现中国实际上在悲观的情绪上是排名第二的,大家可以思考一下背后的原因是什么。   今天我的分享就到这里,非常感谢大家,感谢主办方HRTech China的邀请!   欢迎关注HRTech China微信公众账号,回复420可获取演讲嘉宾的分享资料; 欢迎点击链接,了解420中国人力资源科技年度论坛的报道
    人机协作
    2018年04月26日
  • 12