HR的影子AI行动指南: 从隐蔽使用到负责任 AI 的组织能力建设HRTech概述:影子AI (Shadow AI) 正在成为企业的真实现状:员工早已在日常工作中使用 AI,但往往“不敢说、不敢公开”。这不是违规,而是组织真实需求的外露,是基层对效率的自主追求。影子 AI 暴露的是心理安全不足、工具体验落差,以及组织学习断裂。HR 的角色正在发生改变:不再只是制度执行者,而是 AI 文化的塑造者、心理安全的设计者、治理框架的共同构建者。四步框架——心理安全、显性化、白化机制、Responsible AI 建设——将帮助企业把“地下创新”转化为组织能力。谁能更早拥抱 Shadow AI,谁就能在下一轮 AI 浪潮中领先。
一、当 AI 早已走进一线,却还停留在管理者PPT里
在很多企业的管理层会议上,AI 依然是战略汇报中的一个章节,是技术团队路演中的一个亮点,是外部大会上反复出现的关键词;但在员工的真实日常工作中,AI 早已“悄悄上岗”。销售用 ChatGPT 改邮件、运营用生成式模型写文案、HR 自己也可能用 AI 写 JD、起绩效评语、梳理政策……只是,这一切往往都发生在“未报备、未批准、未纳管”的状态下。这就是所谓的 Shadow AI(影子 AI):员工在未正式获批、未纳入官方工具体系的前提下,自行使用各类 AI 工具完成工作目标。现有研究与市场观察都在指向同一个事实:员工实际使用 AI 的比例,远高于企业管理层的认知。而且,越是高绩效、越接近业务一线的员工,越有动力去寻找更高效的工具,也越可能成为影子 AI 的重度用户。对 HR 管理者而言,Shadow AI 不仅是一个技术或安全问题,更是一个组织问题与文化问题。如果只是简单将其视为“违规操作”,采取封堵、禁用、隔离等手段,只会把本就隐蔽的使用推向更地下的角落,让企业既承担风险,又完全丧失学习机会。本指南的出发点,是从 HRTech 与组织文化的视角,帮助 HR 管理者把 Shadow AI 从“地下水”引向“有渠道的水利系统”,把分散、隐蔽的个体实验,转化为安全、可控、可持续的 Responsible AI(负责任 AI)能力。
二、重新理解 Shadow AI:从“违规现象”到“欲望路径(Desire Path)”
如果从传统 IT 管理的视角,Shadow AI 与 Shadow IT 一样,是“未授权应用”,理应被列入风险清单。但如果我们转换视角,会看到另一层含义:Shadow AI 更像是校园里的“欲望小路(Desire Path)”——学校规划了标准道路,然而师生会按照自己的效率和习惯,踩出一条更加真实的路径;这条路径,往往比设计者想象的要合理得多。在企业中,Shadow AI 的出现,首先说明官方工具与流程无法完全满足一线需求。员工之所以绕过内部系统使用外部 AI 工具,往往不是为了规避规则,而是为了完成目标、节省时间,甚至是为了弥补现有系统的不足。其次,Shadow AI 折射出一种“不敢公开的创新”。许多员工其实已经在积累自己的提示词库、工作流模板和小型自动化流程,但出于对“被认为偷懒”“被质疑是否算自己的贡献”“被误读为岗位可被替代”的担心,他们选择不公开、不分享、不沉淀。换句话说,Shadow AI 是员工用脚投票之后留下的轨迹,是组织真实 AI 需求和真实效率突破的“热力地图”。如果企业只是从合规层面、技术控制层面去理解 Shadow AI,就会错过它作为“需求信号”和“创新线索”的价值。这也是 HR 需要主动介入的关键原因:如何将这种制度外的创新、隐蔽的效率实践,转化为可治理、可复制的组织能力。
三、Shadow AI 暴露的三大管理缺口:心理安全、工具落差与学习断裂
要把 Shadow AI 当成机会,首先要承认它是组织管理上的一面镜子。当前大量影子 AI 的存在,至少揭示了三类典型缺口。第一,AI 心理安全感缺失。员工不敢公开承认自己使用 AI,是因为在当前文化氛围下,“用 AI 完成工作”并未被正式定义为一种被鼓励的能力,反而可能被解读为“偷懒”“不够专业”,甚至被视为未来裁员时“可以被机器人替代”的证据。如果没有心理安全感,员工就不会主动说明“这里我用到了 AI”,更不会愿意把自己的 AI 工作流分享给组织,这直接阻断了企业学习的可能性。第二,官方工具与真实需求之间存在明显落差。很多企业已经在搭建内部大模型平台或 AI 助手,但常见问题包括响应缓慢、调用复杂、上下文受限、接入场景单一,甚至与员工日常使用的应用脱节。一线员工用外部 GPT 等工具可以在 30 秒完成的任务,内部工具可能需要数分钟甚至更长。一旦体验差距过大,Shadow AI 就几乎不可避免。第三,组织学习与治理机制断裂。当前不少企业对 AI 的管理仍停留在“政策下载”“使用禁令”“统一培训”的层面,缺少一个真正面向业务的、可持续的 AI 学习和治理循环:哪里出现了新的 AI 工作流,如何被发现、如何被评估、如何被白化(纳入官方)、如何被复制推广。结果是,员工的创造性实践被锁在个体层面,组织既看不到风险,也看不到机会。
四、HR 在 Shadow AI 中的独特角色:文化定义者与行为架构师
在 AI 治理的角色分工中,IT 负责技术护栏和安全架构,高管层负责战略方向与问责机制,而 HR 的核心职责在于“人”和“行为”。这意味着,HR 在 Shadow AI 问题上的角色,不是简单地转发 IT 的禁用公告,而是要通过文化、制度、激励与能力建设,把一个隐蔽、分散、个体化的现象,转化为公开的、可讨论的、可治理的集体实践。其一,HR 是 AI 心理安全感的主要设计者。心理安全感不是一句口号,而是涉及绩效评估逻辑、能力模型定义、晋升标准、沟通语境的一整套机制。HR 需要帮助管理层明确:使用 AI 是一种能力,不是作弊;公开分享 AI 使用经验,是一种贡献,而不是可疑行为。只有这样,员工才会相信“说真话是安全的”,AI 使用才能从影子状态走向阳光之下。其二,HR 是 AI 文化的塑造者。HR 可以引导企业从“工具导向”转向“文化导向”:与其问“我们有没有自己的大模型”,不如问“我们的员工能不能自然地把 AI 作为工作伙伴”。这种文化关乎是否鼓励尝试、是否允许试错、是否鼓励跨团队分享,以及是否把“AI 流畅性(AI Fluency)”写进人才画像与能力模型之中。其三,HR 是 AI 能力建设与治理框架的共同设计者。在岗位说明书、培训发展、人才盘点和组织发展项目中,HR 完全可以把“与 AI 协作的能力”“构建 AI 工作流的能力”“识别和审查 AI 输出风险的能力”作为新一代核心能力维度,并与 IT、安全、法务共同搭建 Responsible AI 的制度框架和教育体系。
五、HR Shadow AI 行动框架:从察觉现象到建立负责任 AI 体系
要从战略层面走向具体行动,HR 可以参考一个“四步式”行动框架:心理安全 → 显性化与分享 → 白化与护栏 → Responsible AI 体系化。
第一步:建立 AI 心理安全感,明确“用 AI 是被鼓励的行为”HR 需要与高管层一起,向全公司发出清晰、统一的信息:在合理边界下使用 AI,是被鼓励的;在工作中说明自己使用了 AI,不会削弱对个人能力的认可;凡是能够证明 AI 使用为业务带来实质价值的案例,都可以成为正面的组织故事。这种信息不应停留在“口头安抚”,而要落实到绩效评估标准、KPI 设定、团队例会、内部沟通中,甚至体现在领导者自身的示范行为里。只有当员工真正相信“用 AI 和说明用 AI 都是安全的”,Shadow AI 才会从“要隐藏”的状态转向“可以讨论”的状态。
第二步:建立 Shadow AI 显性化与分享机制,把个体经验变成组织资产当心理安全感初步建立后,HR 应主动设计可持续的分享机制。例如,设立跨部门 AI 使用经验分享会或内部“AI Demo Day”,开设专门的 Slack/飞书频道收集高效提示词与工作流,鼓励团队每季度提交一到两个“AI 提效案例”。同时,HR 可以配合设立激励机制,如“季度最佳 AI 工作流”“年度 AI 创新团队”等,以非物质荣誉与适度物质奖励相结合的方式,让员工知道:不仅可以公开,而且值得公开。在这一阶段,HR 的重点不在于立刻统一工具,而在于尽量全面地看见:哪些岗位、哪些业务场景、哪些流程已经自然地被 AI 改造;在哪些地方,Shadow AI 已经成为事实标准。这些信息会成为后续治理和产品化的坚实基础。
第三步:与 IT 共建“白化机制”和技术护栏,从影子实践走向合规落地当大量 Shadow AI 使用场景被可视化之后,HR 应与 IT、安全、法务组成联合治理小组,对这些场景进行分级评估:哪些场景风险较低,可以通过简单规范直接纳入官方工具;哪些场景涉及敏感数据,需要通过技术手段(如脱敏、私有化部署、安全网关等)重构方案;哪些场景暂时不宜使用外部公共模型,需要专门设计替代路径。所谓“白化机制”,并不等同于“一刀切审批”,而是一个将影子实践纳入正式工具链与风控体系的过程。例如,将员工实践中最常用的提示词整理成组织级 Prompt Library,将高频工作流固化为一键调用的自动化模板,将临时性质的“复制粘贴+外部网站”操作替换为安全 API 或内部模型调用。HR 在此过程中的角色,是确保白化过程不压制真实需求,避免以管理的名义牺牲体验,从而促使员工再次转向影子路径。
第四步:构建以 Responsible AI 为目标的治理体系,将 AI 融入人才与组织发展
当显性化、白化和护栏搭建初步完成,组织就进入了 Responsible AI(负责任 AI)的建设阶段。此时,HR 需要协同其他关键职能,搭建一个长期可运行的治理体系,而不是一次性的专项项目。在制度层面,可以明确 AI 使用政策,包括可用场景、敏感数据边界、必须进行人工复核的情形、生成内容的署名与责任划分等;在能力层面,可以将 AI 相关能力写入岗位能力模型和晋升标准,将提示词能力、AI 判断能力、工作流设计能力、风险识别能力等,作为人才发展的新维度;在教育层面,可以设计分层培训体系:对所有员工提供基础 AI 素养课程,对管理者提供“AI 驱动团队”的领导力课程,对关键岗位提供场景化的深度训练。更进一步,HR 还可以推动将 AI 相关数据纳入组织诊断与人才盘点:例如,团队内部 AI 使用质量与频率是否与业务成效相关,哪些团队在 AI 采用上明显落后,哪些岗位的任务内容已经悄然改变,需要调整职位说明与绩效权重。这些工作会让 Responsible AI 不仅停留在“安全与合规”的层面,而真正延伸到“能力与竞争力”的层面。
六、典型应用场景:从招聘到绩效,Shadow AI 如何转化为治理样板
在具体实践中,HR 可以从几个典型场景入手,将 Shadow AI 转化为治理范例。在招聘领域,许多企业已经观察到候选人利用 AI 优化简历与面试回答,同样也有招聘团队使用 AI 来撰写 JD、筛选简历、生成面试问题。HR 可以先通过工作坊收集招聘团队真实使用 AI 的方式,识别其中哪些做法有助于提高效率与候选人体验,哪些做法可能带来偏见或不透明的风险。随后,通过明确政策与技术手段,构建一个既利用 AI 增效,又能保证公平与可解释性的招聘流程,并在内部公开这些标准,以减少阴影和猜忌。在绩效与评价场景中,部分管理者可能已经使用 AI 来草拟绩效评语或反馈。HR 不应简单禁止,而应明确:AI 可以作为辅助撰写工具,但不可以替代管理者的主观判断;最终的评语内容必须由管理者审核并承担责任。同时,HR 可以为管理者提供“如何借助 AI 写出更清晰、更具建设性的反馈”的培训,将 Shadow AI 使用引导到有益和规范的方向。在日常运营和知识管理中,员工可能已经在用 AI 整理会议纪要、编写操作手册、归纳流程和 FAQ。HR 完全可以将这些实践纳入知识管理体系:通过统一工具和流程,确保重要内容可以被沉淀、可被搜索、可被版本管理;同时,对不同类型内容设置清晰的访问与保密等级,避免知识资产流失或误用。
七、从 Shadow AI 到 Responsible AI 的飞轮
从 HR 的视角,Shadow AI 不是短期要消灭的现象,而是长期需要理解和引导的“地下创新能量”。一味压制,只会带来更隐蔽的使用与更高的不可控风险;积极引导,则可以形成一个健康的飞轮:员工自发实验 → 组织建立心理安全与分享机制 → 高价值实践被识别并白化 → 在治理框架下标准化与规模化 → 反馈到文化与能力体系 → 刺激下一轮更高质量的实践。在这一过程中,HR 的角色正在发生根本变化:不再只是制度的执行者,而是 AI 文化的设计者、AI 能力模型的定义者、跨职能治理框架的共同架构者。那些能够主动拥抱 Shadow AI、从中提炼出组织机会并搭建 Responsible AI 体系的 HR 团队,将为企业赢得的不只是效率,还有在下一轮技术周期中持续演进的能力。当我们不再只把 Shadow AI 看成“要被消灭的影子”,而是把它视为“正在书写中的真实 AI 采用路线图”,HR 才真正有机会站到 AI 治理的前台,成为组织转型的关键推动者,而不是被动跟随者。
最后,HRTechChina在2024年就发起推动HR工作中实践负责任AI的倡议(简称RAIHR), 我们呼吁所有的人力资源行业同仁一同参与,共同构建和推广RAIHR的理念,RAIHR框架包含六个关键方面:透明性、公平性、隐私性、安全性、道德性和持续性。我们倡议每一位HR专业人士在其企业内部积极主导RAIHR的实施,并鼓励HR科技产品的开发和使用都围绕这一框架展开,以实现真正的可持续发展!我们更相信RAIHR是所有参与者和倡导者的未来关键竞争优势。
Responsible AI in HR(RAIHR)
Responsible AI in HR(RAIHR)是指在HR实践中的AI应用遵循高标准的道德和透明性原则,确保AI决策过程公开、可审查,并且对所有利益相关者公正无偏。
这包括在招聘、员工发展、绩效管理等HR功能中,AI技术的使用既促进了工作效率,也增强了员工的工作体验和满意度。
头条
2025年12月07日
头条
AI 面试可能让你错过真正人才:招聘体系的深层危机正在显现HRTech概述:最近一些观点认为:AI 正在以意想不到的方式改变招聘。最新研究显示,当候选人使用 AI生成简历或面试答案时,低能力候选人反而更容易被录用,而真正的高能力人才却更容易被忽视。一些企业也出现了类似案例:候选人在虚拟面试中表现完美,入职后却完全无法胜任工作,导致团队效率下降、管理者精疲力尽、企业付出高额成本。AI 不会毁掉招聘,但忽视 AI 带来的信号失真,才会让企业失去未来。
更多请关注 HR Tech,为你带来全球最新 HR 科技资讯。
过去一年,AI 帮助招聘团队节省时间、提升转化、加强候选人体验,从JD撰写到职位发布,简历筛选,预约面试,到AI面试。。。但一个越来越明显、却极少被公开讨论的问题,也在悄悄逼近:
AI 是否正在重塑(甚至破坏)招聘判断力,让我们更容易选错人?
Ben Eubanks 的最新研究与案例引爆了 LinkedIn 的激烈讨论:当候选人使用 AI 生成求职材料时——
低能力候选人被录用的概率提高近 20%
高能力候选人反而更不容易被录用,低了20%
这种“反向择优”效应,正在改变招聘的底层逻辑。
更令人担忧的是,评论区的全球 HR 领袖们纷纷补充了他们亲眼见到的真实场景:面试表现完美 → 入职后完全无法产出 → 团队被迫托底 → 管理者精疲力尽 → 文化开始受损。
这不是一个孤立的故事,而是一个可能席卷企业的系统性风险。
AI 正在制造一种“能力假象”
案例中提到的一名候选人,在虚拟面试中表现出色,回答精准、结构清晰,但入职四个月:
零成果
零项目贡献
零可交付
甚至影响团队运作
最终发现,这名员工在面试中使用了 AI 作答,成功伪装了能力。
换句话说:30 分钟的“完美”视频面试,换来团队数月损耗与数万美元成本。
而这只是千百个案例中的一个。
为什么 HR 明明用了更多技术,却更难辨别能力?
来自讨论区的意见逐渐拼出了一个清晰的趋势——
1. AI 正在让“表面能力”变得无限放大
高能力候选人不一定会包装自己;低能力候选人却可以借助 AI 用更低成本伪装“专业度”。
AI 进一步模糊了这些差异。
2. 简历与虚拟面试正在失效
多位 HR 专家直言:
简历再也不是可靠信号
虚拟面试正在被迅速“欺骗化”
招聘进入 AI 对抗 AI 的时代
甚至有企业决定“回归现场面试”,以重新验证真实能力。
3. AI 不是问题本身,传统信号早已不足以判断真实能力
一些观察者指出:招聘本来就难以识别“真正的高绩效者”。
高绩效的本质与文化、环境、团队匹配度深度相关,传统结构化面试与简历从未真正解决问题,只是被 AI 进一步暴露。
招聘正在变成一场“信号失真”的比赛
评论区的观点呈现出几大阵营:
阵营一:AI 正在破坏招聘质量(严重担忧)
代表观点:
AI 生成的材料让人难以分辨真实能力
企业正在“被迫雇佣”不合适的人
真正优秀的候选人被算法淹没
人才筛选成本将大幅上升
招聘团队信任感正在崩塌
一句话总结:招聘质量在下降,而问题比我们想象的更系统性。
阵营二:这不是 AI 的问题,是招聘本来就有问题(中性派)
他们指出:
高能力本来就难以提前识别
文化与情境决定绩效,并非“能力”绝对正确
AI 只是放大了原有的招聘缺陷
他们的观点提醒我们:AI 是镜子,不是元凶。
阵营三:AI 提升了公平性(乐观派)
这一阵营认为:
AI 提高了“底部候选人”的竞争力
职场公平性反而有所提升
我们应该让“更努力的人”获得更多机会
顶尖人才仍然可以凭实力脱颖而出
一句话:AI 提高了地板,但天花板仍靠候选人自己。
不论观点如何,有一件事很清晰:招聘正在被AI重新定义
在这场激烈讨论中,一个共识逐渐浮现:
招聘流程必须重建,关键能力必须回归现场验证。
未来企业将依赖更多不能被 AI 伪造的信号,例如:
实战性任务 / 工作样本
情境模拟与 Job Simulation
多维度团队协作测试
现场面试(而非纯虚拟)
结构化评分 + 多人交叉验证
背景调查与过往绩效证据
推荐与 alumni 体系
长周期 probation 的数据化追踪
换句话说:招聘的核心正在从“材料审查”转向“能力认证”。
而 HR 的专业能力(判断力、流程设计能力、评估能力)比任何时候都更重要。
真正的危机不是“AI 作弊”,而是企业不知道如何区分“真实能力与伪装能力”
某位 HR 领导者的评论直击要害:
“这不是关于 AI,而是关于当我们错误理解‘能力信号’时,企业正在付出巨大代价。”
坏的招聘决策带来的不是一次错误,而是:
更高的替换成本
团队士气损失
文化受损
管理者过度消耗
被竞争对手抢走真正优秀的人才
长远来看,是组织竞争力的弱化。
归根结底,AI 不会自动改善招聘,它只会放大我们的系统性问题。如果企业仍然依赖被 AI 轻易伪装的信号(简历、虚拟面试、关键词匹配、模板化回答),那么判断失误不是偶然,而是必然。
但危险真正开始的地方,也是机遇出现之处。
因为这次 AI 引发的“招聘危机”,本质上是一场关于 人才信号、能力验证、评估方法和职业诚信 的全面重构。未来5年,能否区分“真实能力”与“AI伪装能力”,将成为企业竞争力的核心分水岭。
企业需要现在就行动:
重建技能验证体系,而不是继续依赖被 AI 扰动的旧信号
加强面对面评估和工作样本测试
训练招聘经理识别 AI-assisted 与真正能力的差异
建立候选人体验与风险控制并重的招聘策略
在组织层面推动 AI 素养与 AI 判断能力的提升
而这一切的顶层原则,最终都指向同一个方向:
Responsible AI in HR(RAIHR)必须成为新的行业标准
Responsible AI in HR(RAIHR)强调:所有用于 HR 工作的 AI 系统,都必须遵守高标准的伦理、透明性与公平性原则。
这意味着:
AI 的决策逻辑必须 可解释、可审查、可追踪
招聘流程中涉及 AI 的环节必须 公开说明其使用方式
系统输出必须经过 人类判断的复核与治理
所有 AI 应用必须确保 对候选人、企业、员工公平无偏
任何可能产生偏差或欺骗性的 AI 手段(候选人/企业端皆然)都需纳入 风险管理
RAIHR 不是一个选项,而是企业在 AI 时代保持人才竞争力、降低风险、维护组织信任的前提。
这是 HR 行业正在面临的深层变革,也是所有 HR、TA、企业领导者必须共同推动的责任。我们不但要用 AI,更要 正确地用 AI。
为什么 AI 已成为 HR 的核心业务 ——组织重塑的时代,HR 不再是配角HRTech概述:生成式 AI 的迅猛发展,让企业看到了巨大的生产力潜力,但多数公司却难以真正落地。AI 的商业价值高达 4.4 万亿美元,然而大量组织依然停留在试点阶段,中小企业更普遍面临不会用、不敢用的问题,形成明显的“AI 优势差距”。在这场变革中,AI 并不是单纯的 IT 项目,而是关乎“人、组织与文化”的系统性重塑。HR 正处在核心位置。首先,HR 必须成为 AI 的先行者,通过在招聘、沟通、培训等实际场景中应用 AI,建立团队的信任基础。其次,HR 是组织 AI 文化的设计者,要通过公开沟通和机制建设,消除员工对 AI 的恐惧,将影子 AI 使用带到台面,让创新真正流动起来。最后,HR 需要推动岗位重塑、技能升级,构建面向未来的工作模型,协同技术团队打造“AI 时代的全新组织”。更多请关注 HR Tech,为你带来全球最新 HR 科技资讯。
近年来,生成式人工智能以惊人的速度影响了几乎所有行业,从编程、内容创作,到客户服务与教育领域,无一例外地被迫重塑工作方式。自 2022 年末 ChatGPT 面向公众以来,AI 技术展示了近乎爆炸式的能力进化:代码生成工具可在几秒钟内构建微应用;聊天机器人实现即时研究;视频生成模型开始替代部分专业制作流程。企业对 AI 的期待水涨船高,咨询机构给出的预测甚至认为 AI 将为全球企业带来高达 4.4 万亿美元的生产力价值。
然而,与宏伟的增长愿景相对照的,是令人意外的普遍“使用困难”。大量企业虽然认识到 AI 的潜力,却难以真正落地。有人被困在无止境的试点阶段;有人尝试推动 AI 却发现团队抵触;还有企业在培训、流程、角色分工上处处遇阻。特别是中小企业,面对技术复杂度、组织资源有限、员工能力差异等现实挑战,更难真正从 AI 中获益。英国的研究显示,80% 的小企业领导者将 AI 视为目前最棘手的挑战,而小企业尝试采用 AI 的比例仅为大企业的一半。
更令人担忧的是,企业内部正在形成明显的“AI 使用断层”。调查显示,高级主管中有 73% 会每月至少使用一次 AI,但基层员工只有 32%。这意味着组织的 AI 价值未能渗透到日常业务的最末端,而集中在少数人手中。Employment Hero 英国区总经理 Fitzgerald 将其称为 AI Advantage Gap(AI 优势差距):若只有部分人能从 AI 中受益,那么 AI 永远不足以形成组织级的转型或生产力跃迁。
面对这种现实困境,一个事实变得愈发清晰:AI 转型不是技术问题,而是组织问题;不是软件决策,而是人才决策;不是 IT 的工程项目,而是 HR 的战略议题。
这不是夸张,而是结构性现实。
生成式 AI 的影响范围并非局限在工作效率提升,而是触及组织的根部——岗位如何设计、团队如何协作、权责如何划分、能力如何定义、薪酬如何分配,以及领导力如何重构。这些恰恰是 HR 的原生领域。因此,当企业试图推动 AI 时,最重要的不是“装载多少工具”,而是“重建怎样的工作系统”。这意味着:AI 转型本质上,是一场深度的人才与组织再造,而 HR 是唯一能驾驭这个系统工程的部门。
实际上,AI 已经推动 HR 走向领导桌。越来越多的组织将 AI 相关的组织重塑交给 CHRO 负责,一项面向全球的调查显示,近三分之二的 IT 决策者认为 HR 与 IT 将在未来五年合并为一个综合职能。 以 Moderna 为例,这家拥有 5000 多名员工的生物科技企业已经设立了兼管 HR 与 IT 的高层岗位,使组织转型更流畅、更系统、更敏捷。
清晰可见,AI 时代已为 HR 打开一个罕见的战略窗口。要理解 HR 为什么是 AI 时代的核心力量,我们需要深入探讨三个关键维度:HR 如何成为 AI 的实践先锋;如何成为 AI 文化的塑造者;以及如何成为未来组织的设计者。
一、HR 必须成为 AI 的实践先锋:没有“示范效应”,就没有组织级转型
要推动组织中的任何变化,尤其是与技术高度相关的变革,HR 需要的不仅是机制与流程,更是一种“可信的领导位置”。所谓可信,不是权威地位,而是“自己做到”。HR 如果想引导团队、鼓励员工、推动落地,那么自己必须成为组织中最会用、最敢用、最能用出价值的人群之一。因为员工不会相信一个“自己不用 AI,却要求别人用”的部门;组织也不会轻易跟随一个“理论正确、实践缺失”的声音。
实际上,HR 部门自身拥有大量天然适配 AI 的工作流程,正适合“先行试验”。招聘场景是最早被 AI 覆盖的领域之一,AI 可以帮助生成职位描述、筛选简历、优化面试安排;行政事务中,大模型能将复杂政策翻译为员工更易理解的文字;培训模块中,AI 可以自动生成学习内容、个性化学习路径、构建培训资料库;知识管理方面,AI 可以构建内部咨询助手或生成常见问题解答。
当 HR 能用 AI 节省时间、提升质量、加速流程,他们就能展示来自真实业务的成果,这些成功案例本身就会成为组织内最强的推动力。正如 Fitzgerald 所说:“员工不希望 AI 被强制要求,而是希望看到它能真正减少工作负担,看到他人用得好,并在这样的氛围中获得探索的自由。”
因此,HR 想参与 AI 转型,他们需要率先行动。他们需要不仅掌握工具,更要深入理解员工技能差异、培训路径、岗位匹配度等深层次组织因素。这种理解正是 HR 在 AI 时代的核心价值,也是为什么 IT 单独推动 AI 永远无法成功的原因。
二、HR 是 AI 文化的设计者:没有文化,就没有 AI 的持续使用与真实价值
技术落地最大的障碍从来不是技术本身,而是人。AI 推动组织变革时,员工的恐惧、抵触、误解,会迅速形成隐形但巨大的阻力。AI 能否落地,很大程度上取决于是否能培养出“健康、开放、透明、安全”的 AI 使用文化。
当企业宣布将推动 AI,员工的第一反应往往不是“太好了”,而是“我们要被替代了吗?”这种焦虑比许多管理者以为的更普遍、更深层。员工担心 AI 是裁员前奏,担心 AI 揭露效率差异,担心领导以“自动化”之名增加工作量,更担心自己无法掌握技术,被落在组织演进之后。
这种压力催生出另一个更深层的问题——影子 AI(shadow AI)。即员工在不告知、不可控的情况下,私下使用 AI 工具。安全公司 Varonis 的数据估计,多达 98% 的员工正在使用影子 AI。
为什么?因为他们害怕承认。害怕没有权限。害怕被误解为偷懒。害怕被系统审查。
然而影子 AI 对企业产生的破坏并不仅仅是安全风险,它还阻断了一个组织最核心的价值源:来自一线的实践洞察。大模型是通用工具,它的价值并不是“按规定使用”,而是在真实岗位中被创造性地使用,探索新的工作方式。而这些创新往往来自基层,而不是会议室。
为此,HR 的文化角色变得至关重要。HR 必须向员工传递一个清晰的信息:“使用 AI 是被鼓励的、是安全的、是受支持的。”只有文化健康,员工才会愿意公开分享他们的 AI 经验,组织才能真正从海量探索中获取价值。这需要 HR 建立开放分享机制,例如部门间交流、AI 实践分享会、内部 hackathon,甚至是在 Slack 或 Teams 上专门开辟的 AI 灵感频道。同时,对于提出高价值 AI 使用方式的员工,给予认可或奖励,使 AI 成为一种积极参与的行为,而不是隐蔽使用的灰色地带。
正如 ZRG 全球 AI 负责人 Vyas 所言:“禁止影子 AI 不会让它消失,只会让它更地下。让影子 AI 浮出表面,是文化建设的核心,而这是 HR 的工作。”
三、HR 是未来组织的设计者:AI 重塑岗位、结构与能力模型
AI 的到来并不只是让员工更快地写邮件、生成报告,而是从根本上重塑组织结构。它改变了工作执行方式,也改变了工作的组成方式,甚至改变“工作”本身的定义。如果企业要真正发挥 AI 的力量,就必须重新审视岗位结构、团队协作方式、晋升路径、薪酬体系、能力模型与组织架构。
微软在《Work Trend Index Annual Report 2025》中提出了一个重要观点:传统的“三角形组织结构”将被“Work Chart”取代。后者强调以目标驱动团队,而非以职能分隔流程,并且通过 AI 扩张员工的能力边界,使组织运作更加灵活、动态、高效。
这种新型组织在多个层面需要 HR 的深度参与。例如岗位重设计:AI 接管哪些任务?哪些技能需要重新训练?团队如何围绕新的流程协作?哪些角色将新建?哪些职能需要融合?薪酬体系如何调整以反映 AI 带来的能力扩张?绩效评价应如何更新,以避免过度强调“完成任务的速度”,而忽略“与 AI 合作的质量”?
此外,AI 会推动新角色的出现,例如 Chief AI Officer、Prompt Engineer、AI Trainer 等。企业需要在人才规划中明确这些角色,并与领导层共同设计长期发展路径。更重要的是,AI 会重塑领导力模型,要求管理者从传统的任务管理者转变为能力赋能者、文化引导者和人机协作设计者。这些领域都属于 HR 的核心能力范围,HR 必须主导组织在这些方面的建设。
更重要的是,在“Work Chart”框架中,人类与 AI 代理之间的合作关系将成为组织运作的核心,这涉及流程设计、责任划分、边界设定、风险管理等复杂问题,HR 需要与技术团队共同制定“人机协作模型”。这是一个新的专业领域,也将成为 HR 职业发展的重要方向。
AI 时代属于 HR,前提是 HR 要真正承担起领导角色
回顾历史,每一次技术革命背后,都伴随着组织结构、劳动关系与管理方式的系统性重塑。从工业革命到互联网浪潮,从流程自动化到企业数字化,HR 都扮演着关键角色。然而,生成式 AI 这一次不同于以往。它不是对现有效率的优化,而是对“工作本身”的重新定义,因此是一场深度的管理革命。
这场革命的核心问题不是“技术能做什么”,而是“员工如何使用技术、团队如何协作、组织如何重塑、文化如何建立”。而这些,是 HR 的专业领域。
AI 是否能从工具变成生产力,不取决于 IT 部门部署了多少模型,而取决于 HR 是否成功构建了一个让员工敢用、愿用、能用并用得好的组织。
AI 时代的真正竞争,不是技术能力之争,而是组织能力之争。而 HR,就站在这场竞争的正中央。
ZRG 的 Vyas 说得很准确:“这将成为新的常态,而且比我们想象得更快。”AI 的到来不是问题,而是机会。站在这一刻,HR 有一次罕见的机会,真正成为企业未来发展的战略核心。
未来不是预言出来的,而是由 HR 一步步构建出来的。
黄仁勋震怒背后:英伟达经理要求“减少 AI 使用”的矛盾与未来组织文化之争HRTech概述:英伟达 CEO 黄仁勋在全体员工大会上得知公司内部部分经理要求团队“减少使用 AI 工具”后,当场表达震怒。这一情绪并非情绪化反应,而是揭示了英伟达内部关于“AI 应该在多大程度上改变工作方式”的深层矛盾。作为全球最依赖 AI 红利的公司,英伟达本应在内部全面拥抱 AI。然而部分经理却要求降低 AI 使用比例,这背后反映出几大典型的组织阻力。
在英伟达(NVIDIA)最近的一次全员大会上,一段罕见的内部对话成为硅谷最引人关注的话题。据多位参会员工透露,当 CEO 黄仁勋得知公司内部竟然出现“部分经理要求团队减少使用 AI 工具”时,他当场表达了强烈不满,语气之直接和震动程度,都远超他以往的公开讲话风格。
他在台上反问道:“Some managers are telling their people to use less AI. Are you insane?”这句“你疯了吗?”不仅体现了他的震怒,也反映了这家引领全球 AI 浪潮的公司内部,正在经历一场深层次的组织文化冲突。
事实上,这次讲话不仅是一场情绪释放,而是一场明确的内部战略宣示。黄仁勋随即提出了英伟达未来必须执行的 AI 落地“四项内部要求”,这些要求将直接影响组织的工作方式、管理结构和文化方向。
他首先强调,AI 必须融入所有工作场景,成为默认工作方法,而不是实验性工具。英伟达内部全面采用自动化,包括工程、文档、市场、行政、运营等部门。他甚至使用了强硬字句:“I want to automate every task which can be automated with AI.”这意味着任何仍沿用“人工流程优先”的团队,都将被视为阻碍创新。
其次,他指出 AI 不完美不是拒绝使用的理由,而是英伟达员工参与改进的必要动力。、他要求团队在不成熟的情况下就开始尝试,并通过使用反馈推动工具完善。“Use it until it works”被视为一种责任,而不是压力。
第三,他将矛头明确指向管理层,强调管理者的角色不再是流程维护者,而是团队 AI 转型的推动者。如果经理阻碍或限制 AI,他认为这“本质上偏离了公司的方向”,也会影响管理绩效。
最后,他提出了英伟达未来的标准工作模式——“AI-first, Human-verified”。过去几十年的工作流程都是先由人工产出,再由技术辅助,但未来英伟达要求所有团队反转顺序:AI 生成初稿,人类进行验证与提升。
然而,一个问题随之而来:为什么连英伟达内部会出现“减少 AI 使用”的指令?原因并不神秘,而是所有科技公司在转型过程中都会遇到的组织现实。部分经理担心 AI 工具不够稳定或准确,可能影响产出质量;有些担忧团队技能差异导致结果不可控;更多的顾虑则来自安全与保密压力——英伟达的许多业务涉及敏感数据与技术细节,管理层会对全新的工具保持天然谨慎。
同时,大型公司长年形成的流程惯性也让团队更倾向于沿用熟悉的方式而不是快速变革。
然而,真正的矛盾并不在技术层面,而在组织文化层面。英伟达的增长速度极快,而内部的流程与文化能否匹配这种速度,将决定公司能否继续在 AI 时代保持领先。黄仁勋的震怒,是对这种文化滞后的直接反应。他需要的不仅仅是技术领先,更是一个敢于全面拥抱 AI 的组织。而限制 AI 使用的管理行为,在他看来,实质上是在削弱公司未来的竞争力。
英伟达的这场内部冲突,其象征意义已远超公司本身。它揭示了一个普遍真相:技术革命的难点,不在技术,而在组织。无论企业规模多大、技术多先进,只要涉及流程重构与权力结构变化,就一定会遇到中层阻力与文化惯性。黄仁勋的反击,展示了一个科技巨头在 AI 时代试图重塑自身的决心,也为整个行业提供了一个重要参照。
在自动化和 AI 渗透越来越深的时代,每一家企业都将面对类似的挑战:该如何推动员工真正使用 AI?如何处理中层对变革的焦虑?如何让组织结构适应全新的生产方式?更关键的是,当 AI 生成内容成为工作默认方式时,团队的能力模型、考核方式和协作方式又将如何重塑?
英伟达这场风波只是开端,却已经提出了一个足够深刻的问题:当最懂 AI 的公司都必须直面内部的犹豫与阻力时,其他组织又该如何迎接即将到来的自动化时代?
头条
2025年11月27日
头条
AI 时代下企业人力资源管理(HR)的重塑与实践:基于领英峰会中出海案例的深度解析HRTech概述:本文根据 “ConnectIn 2026 年度出海峰会” 的现场分享和报告内容整理而成,该峰会由 领英 (LinkedIn) 主办,旨在探讨中国企业在全球化 4.0 时代所面临的机遇与挑战。峰会内容围绕人才信任、技术信任和绿色信任三大支柱展开,强调企业需具备生而全球化的视野,并在组织、人才、技术和合规方面进行深度变革。多位行业领袖,包括领英、阿里云、小米、美图和霸王茶姬的高管,分享了各自企业在构建AI驱动的组织、吸引国际化人才、应对全球合规挑战(如ESG、数据合规)以及进行文化软出海的实践经验。仅供参考。
AI 与组织变革的浪潮
人工智能(AI)与数字化浪潮正以前所未有的深度和广度重塑全球商业格局。正如领英大中华区总经理王倩女士所指出的,AI 叠加经济周期正在重塑全球商业规则,直接导致“旧的岗位被快速迭代,新的能力缺口激增”。在这一宏观背景下,企业面临着前所未有的挑战与机遇。本文的核心论点在于,AI 在人力资源(HR)领域的角色已经从单纯的工具辅助,升级为驱动组织持续进化的关键引擎。它不仅是提升效率的手段,更是企业在全球化竞争中构建组织韧性、实现人才战略升级的核心动力。
场景一:AI 在招聘与人才筛选中的实践应用
面对全球人才的激烈竞争,AI 正从根本上颠覆企业人才获取的逻辑。它不再是简单的效率工具,而是重塑了人才价值评估(从履历到技能)、筛选信度(从经验到数据)和战略储备(从被动响应到主动构建)的三大核心支柱。下述来自行业领军者的实践,清晰地揭示了这一系统性变革。
从‘履历’到‘技能’:重塑人才评估的底层逻辑
AI 技术正有力推动招聘从传统的“学历履历导向”向更为精准的“技能导向”转变。领英(LinkedIn)的实践正是这一趋势的典范。作为“人才信任的加速器”,领英依托其全球 13 亿会员的庞大数据基础与先进的 AI 技术,通过精细化的技能标签,为企业在全球范围内快速、精准地匹配到符合需求的顶尖人才,极大地提升了招聘的效率和质量。
智能化面试:将招聘流程标准化与专业化
AI 不仅能筛选简历,还能深度辅助面试官,全面提升招聘的质量与效率。小米集团的**‘面试助手’工具是这一趋势的力证,它通过集成 AI 简历筛选、智能问题生成、自动化面评及复盘等功能,将面试流程系统性地标准化与专业化。该工具上线不到 6 个月**,已有 10 万场面试借助其完成,有效提升了面试的专业度与一致性。
智能算法驱动:在海量数据中精准锁定顶尖人才
小米的实践展示了一种“组合拳”打法:通过在招聘流程的多个关键节点植入 AI,将单点提效升级为全流程的智能化重塑。其**‘智能选材’**系统进一步印证了这一点,该系统通过 AI 算法分析内部人才数据,帮助管理者发现了许多在传统人才盘点中“未曾被发现的人”,并成功筛选出多位符合其全球国家经理模型的顶尖人才,为海外业务的拓展提供了关键支持。
专业人才池的主动构建
对于绿色能源等新兴领域,专业人才的稀缺性尤为突出,被动等待已无法满足战略需求。AI 能够助力企业快速构建专业人才储备,为未来发展奠定基础。全球锂电池领军者 ATL 的案例极具代表性。领英协助 ATL 开展了其首次全球海外校园招聘,在短短 6 周时间内,不仅帮助 ATL 实现了海外雇主品牌粉丝超过 17 倍的惊人增长,更重要的是,为其储备了近 9,000 名硕士和博士学历的高精尖绿色人才,为企业奠定了坚实的全球绿色人才基础。
场景二:AI 在人才发展与能力建设中的实践应用
随着技能迭代速度空前加快,“技能错配”和“能力缺口”已成为组织发展的核心痛点。AI 正在成为构建“学习型组织”的核心引擎,它通过将能力建设融入组织战略、集成个性化学习平台并激发个体潜能,帮助企业系统性地应对未来的不确定性。
AI 驱动的组织战略:实现全员能力系统性升级
将 AI 能力建设融入组织战略与企业文化,是实现全员能力升级的关键。阿里云提出的**‘AI 驱动战略’,不仅是业务战略,更是组织战略。它明确要求所有员工(不论是否为技术岗)**都必须学习并通过阿里云大模型认证。这一举措有力地推动了组织内部的角色转型,使业务专家能够向 AI 架构师进化,开发人员则向全栈 AI 工程师迈进,从而系统性地提升了整个组织的 AI 能力基线。
定制化学习平台的集成
对于拥有大规模海外员工的企业而言,如何提供统一且个性化的培训是一大难题。美的集团通过将自身的学习平台与 LinkedIn Learning (领英学习平台) 进行深度集成,为海外 4,000 多名员工提供了个性化的、多语言的软技能与 AI 培训。这一举措不仅有效增强了全球化组织的软实力,更带来了显著的业务成果:美的招聘的中高级人才中,超过 50% 来自于领英渠道,实现了人才发展与人才获取的良性循环。
‘复合型人才’的涌现:从个体赋能到组织效能倍增
AI 时代要求人才具备更强的综合能力,从而提升整个组织的效能。美图公司鼓励员工成为**‘六边形/蜂巢模型’**那样的多面手,鼓励每一位员工结合 AI 像一个新团队一样工作。这种模式旨在通过提升单个人才的质量和能力维度,激发个体潜能,进而促进组织整体效能的飞跃,使组织在面对复杂多变的市场环境时更具韧性和创造力。
场景三:AI 在组织管理与效率提升中的实践应用
AI 正作为一种“革命的工具”,深刻地重构着组织的内部流程与管理模式,成为现代组织的“中枢神经系统”。它通过流程自动化、管理数据化和决策智能化,帮助管理者从繁琐的事务中解放出来,聚焦于更具战略价值的工作,将管理直觉升级为数据驱动的实时洞察。
工作流程的自动化与重构
利用数字员工或 AI 工具接管重复性、标准化的工作任务,是提升组织效率的直接手段。阿里云在这方面取得了显著成效。例如,技术文档翻译岗位已由数字员工全面接管,实现了 7x24 小时不间断工作;同时,内部代码生成工具通义灵码的代码采纳率在一年内已从 25% 提升至 50%,有效释放了开发人员的生产力。
动态人才盘点与匹配
流程自动化为组织敏捷性创造了条件。为了支持更加柔性的组织架构,企业需要将人才数据在线化,实现动态盘点与匹配。阿里云通过智能化方式为人才提炼标签,其核心目标是:“随时找到匹配的人才,来之即战,战之即散”。这种模式打破了传统组织架构的壁垒,使人才资源能够根据业务需求进行快速、灵活的调配。
‘组织仪表盘’:将管理直觉升级为数据驱动的实时洞察
数字化工具能够辅助管理者实时掌控组织的健康状况。小米集团为此打造了**‘组织档案’**系统,并将其形象地比喻为“操作系统的命令行”。该工具整合了成本、招聘进度、关键人群状态等多维度数据,帮助管理者实时、全面地掌控组织的运行状态,为科学决策提供了坚实的数据支持。
智能决策辅助:提升一线管理的精度与敏锐度
AI 还能辅助一线管理者进行决策和资源调优,提升管理的精细度。阿里云通过 OKR 智能分析与反馈系统,审视组织内目标承接的一致性。同时,其推出的**‘组织探针’**工具,能够帮助管理者实时感知“组织温度”,即员工与团队的工作状态,从而为管理决策提供更敏锐、更及时的洞察。
拥抱变革,构建 AI 时代的组织新范式
通过对领英峰会上多个出海企业案例的深度解析,一个清晰的战略蓝图浮出水面:AI 正在从根本上重塑人力资源管理,并催生一种全新的组织范式。对于每一位企业领导者而言,拥抱这一变革已非选择,而是生存与发展的必然要求。
组织本质的进化:从静态结构到动态生命体。 AI 时代的组织必须具备自适应、自调整、自学习的能力。它不再是一个固化的科层结构,而是一个能够感知、决策、行动和持续进化的生命体,正如阿里云所追求的“AI 时代的组织操作系统”。这要求管理者必须从传统的“结构设计者”转变为“系统进化官”,其核心任务是构建一个能够自我优化的组织生命体。
人才未来的趋势:从执行者到人机协同的创造者。 一个已被广泛认同的观点是:未来人不会被 AI 替代,但不会使用 AI 的人一定会被会使用 AI 的人替代。在此背景下,管理者的角色必须从传统的管控者转变为“企业操作系统的架构师”。其核心职责不再是分配任务,而是设计一个能够激发个体潜能、促进持续学习、并实现高效人机协同的机制。
最终的价值展望:回归于人,赋能于人。 AI 技术的最终目的,是赋能于人,而非取代人。它旨在将员工从重复性劳动中解放出来,让每个人的时间更有意义,让每个员工的独特贡献被看见。通过高效的人机协同,企业能够创造一个更有活力、更有创造力的新型组织,最终实现个体价值与组织价值的共同成长。