• 人机协同
    【波士顿】全栈机器人平台的Tutor Intelligence 完成 3400 万美元 A 轮融资,加速工业机器人真实场景部署 HRTech概述:美国波士顿的一家机器人平台 Tutor Intelligence 宣布完成 3400 万美元 A 轮融资,总融资额达到 4200 万美元。公司以低成本、快速部署的工业机器人为基础,通过真实现场数据驱动的集群学习机制,使机器人能够以更快速度获得新技能,并在制造与物流领域承担关键生产任务。Tutor 强调“全栈式机器人系统”,将硬件、软件、数据收集与智能训练整合为一个整体,形成强大的数据飞轮效应。更多真实任务带来更快的模型提升,而模型提升又进一步推动更大规模部署。本轮融资将用于提升机器人学习速度、扩展任务类型,以及打造具备更高直觉和灵活性的工业机器人队伍。 美国工业机器人公司 Tutor Intelligence 宣布完成 3400 万美元 A 轮融资,由 Union Square Ventures(USV)领投,Fundomo 联合领投,种子轮领投方 Neo 继续加码。本轮融资后,Tutor 的累计融资规模达到 4200 万美元。 以真实数据驱动的“学习型机器人” Tutor Intelligence 的核心理念是:机器人最有效的学习方式必须来自真实工厂环境,而非受限的实验室。公司打造的低成本、即插即用机器人能够在现场立即投入生产,一旦遇到陌生任务,机器人可请求远程人类导师进行短暂接管,并生成高质量实时训练数据。所有部署数据都会即时汇入统一的智能栈,通过“集群学习”让整个机器人 fleet 的能力不断迭代。 这一机制形成数据飞轮:更多机器人部署 → 更多真实数据 → 更快的模型学习 → 更强的自主能力 → 更大规模的部署。 从 MIT 研究团队到面向全美的机器人平台 Tutor 的两位创始人 Josh Gruenstein 与 Alon 均来自 MIT 机器人研究团队。他们从早期就意识到:机器人智能的瓶颈不在算法或硬件,而在于规模化的真实世界数据。传统机器人项目难以在实验室获得足够多样的任务数据,而 Tutor 则以实际部署的机器人队伍解决这一问题,让数据在真实业务中自然增长。 如今,Tutor 的机器人已经在美国多地落地,被应用于制造业与物流行业的核心生产环节,包括拣选、分拣、装配、包装等任务,以可扩展方式提升产能与灵活性。 融资将用于扩展能力与规模 本轮融资将主要用于三方面: 加速自主学习速度,缩短从“人类示范”到“自主执行”的时间周期。 扩展机器人可执行的任务范围,提升灵巧度与“直觉型”操作能力。 扩大全国部署规模,让中型与传统难以自动化的企业也能负担先进机器人系统。 全栈团队推动实体经济升级 Tutor Intelligence 目前拥有超过 60 名员工,覆盖机器人硬件工程、AI 研究、数据标注、运维技术员、商业团队等多元背景。公司表示,团队的共同目标是构建“软件定义的实体世界劳动力”,以可负担的方式推动制造业与物流业迈向更高效、更灵活的未来。 CEO Josh Gruenstein 表示,Tutor 才刚刚起步,未来可学习型机器人的价值将在更广泛的工业场景中持续释放。 关于 Tutor Intelligence Tutor Intelligence 采用“真实数据驱动学习”的全栈机器人系统,通过即插即用、高可靠性和集群智能,让机器人在真实工厂中不断进化,为制造和物流企业提供高价值自动化能力。
    人机协同
    2025年12月04日
  • 人机协同
    AI 时代下企业人力资源管理(HR)的重塑与实践:基于领英峰会中出海案例的深度解析 HRTech概述:本文根据 “ConnectIn 2026 年度出海峰会” 的现场分享和报告内容整理而成,该峰会由 领英 (LinkedIn) 主办,旨在探讨中国企业在全球化 4.0 时代所面临的机遇与挑战。峰会内容围绕人才信任、技术信任和绿色信任三大支柱展开,强调企业需具备生而全球化的视野,并在组织、人才、技术和合规方面进行深度变革。多位行业领袖,包括领英、阿里云、小米、美图和霸王茶姬的高管,分享了各自企业在构建AI驱动的组织、吸引国际化人才、应对全球合规挑战(如ESG、数据合规)以及进行文化软出海的实践经验。仅供参考。 AI 与组织变革的浪潮 人工智能(AI)与数字化浪潮正以前所未有的深度和广度重塑全球商业格局。正如领英大中华区总经理王倩女士所指出的,AI 叠加经济周期正在重塑全球商业规则,直接导致“旧的岗位被快速迭代,新的能力缺口激增”。在这一宏观背景下,企业面临着前所未有的挑战与机遇。本文的核心论点在于,AI 在人力资源(HR)领域的角色已经从单纯的工具辅助,升级为驱动组织持续进化的关键引擎。它不仅是提升效率的手段,更是企业在全球化竞争中构建组织韧性、实现人才战略升级的核心动力。 场景一:AI 在招聘与人才筛选中的实践应用 面对全球人才的激烈竞争,AI 正从根本上颠覆企业人才获取的逻辑。它不再是简单的效率工具,而是重塑了人才价值评估(从履历到技能)、筛选信度(从经验到数据)和战略储备(从被动响应到主动构建)的三大核心支柱。下述来自行业领军者的实践,清晰地揭示了这一系统性变革。 从‘履历’到‘技能’:重塑人才评估的底层逻辑 AI 技术正有力推动招聘从传统的“学历履历导向”向更为精准的“技能导向”转变。领英(LinkedIn)的实践正是这一趋势的典范。作为“人才信任的加速器”,领英依托其全球 13 亿会员的庞大数据基础与先进的 AI 技术,通过精细化的技能标签,为企业在全球范围内快速、精准地匹配到符合需求的顶尖人才,极大地提升了招聘的效率和质量。 智能化面试:将招聘流程标准化与专业化 AI 不仅能筛选简历,还能深度辅助面试官,全面提升招聘的质量与效率。小米集团的**‘面试助手’工具是这一趋势的力证,它通过集成 AI 简历筛选、智能问题生成、自动化面评及复盘等功能,将面试流程系统性地标准化与专业化。该工具上线不到 6 个月**,已有 10 万场面试借助其完成,有效提升了面试的专业度与一致性。 智能算法驱动:在海量数据中精准锁定顶尖人才 小米的实践展示了一种“组合拳”打法:通过在招聘流程的多个关键节点植入 AI,将单点提效升级为全流程的智能化重塑。其**‘智能选材’**系统进一步印证了这一点,该系统通过 AI 算法分析内部人才数据,帮助管理者发现了许多在传统人才盘点中“未曾被发现的人”,并成功筛选出多位符合其全球国家经理模型的顶尖人才,为海外业务的拓展提供了关键支持。 专业人才池的主动构建 对于绿色能源等新兴领域,专业人才的稀缺性尤为突出,被动等待已无法满足战略需求。AI 能够助力企业快速构建专业人才储备,为未来发展奠定基础。全球锂电池领军者 ATL 的案例极具代表性。领英协助 ATL 开展了其首次全球海外校园招聘,在短短 6 周时间内,不仅帮助 ATL 实现了海外雇主品牌粉丝超过 17 倍的惊人增长,更重要的是,为其储备了近 9,000 名硕士和博士学历的高精尖绿色人才,为企业奠定了坚实的全球绿色人才基础。 场景二:AI 在人才发展与能力建设中的实践应用 随着技能迭代速度空前加快,“技能错配”和“能力缺口”已成为组织发展的核心痛点。AI 正在成为构建“学习型组织”的核心引擎,它通过将能力建设融入组织战略、集成个性化学习平台并激发个体潜能,帮助企业系统性地应对未来的不确定性。  AI 驱动的组织战略:实现全员能力系统性升级 将 AI 能力建设融入组织战略与企业文化,是实现全员能力升级的关键。阿里云提出的**‘AI 驱动战略’,不仅是业务战略,更是组织战略。它明确要求所有员工(不论是否为技术岗)**都必须学习并通过阿里云大模型认证。这一举措有力地推动了组织内部的角色转型,使业务专家能够向 AI 架构师进化,开发人员则向全栈 AI 工程师迈进,从而系统性地提升了整个组织的 AI 能力基线。 定制化学习平台的集成 对于拥有大规模海外员工的企业而言,如何提供统一且个性化的培训是一大难题。美的集团通过将自身的学习平台与 LinkedIn Learning (领英学习平台) 进行深度集成,为海外 4,000 多名员工提供了个性化的、多语言的软技能与 AI 培训。这一举措不仅有效增强了全球化组织的软实力,更带来了显著的业务成果:美的招聘的中高级人才中,超过 50% 来自于领英渠道,实现了人才发展与人才获取的良性循环。 ‘复合型人才’的涌现:从个体赋能到组织效能倍增 AI 时代要求人才具备更强的综合能力,从而提升整个组织的效能。美图公司鼓励员工成为**‘六边形/蜂巢模型’**那样的多面手,鼓励每一位员工结合 AI 像一个新团队一样工作。这种模式旨在通过提升单个人才的质量和能力维度,激发个体潜能,进而促进组织整体效能的飞跃,使组织在面对复杂多变的市场环境时更具韧性和创造力。 场景三:AI 在组织管理与效率提升中的实践应用 AI 正作为一种“革命的工具”,深刻地重构着组织的内部流程与管理模式,成为现代组织的“中枢神经系统”。它通过流程自动化、管理数据化和决策智能化,帮助管理者从繁琐的事务中解放出来,聚焦于更具战略价值的工作,将管理直觉升级为数据驱动的实时洞察。 工作流程的自动化与重构 利用数字员工或 AI 工具接管重复性、标准化的工作任务,是提升组织效率的直接手段。阿里云在这方面取得了显著成效。例如,技术文档翻译岗位已由数字员工全面接管,实现了 7x24 小时不间断工作;同时,内部代码生成工具通义灵码的代码采纳率在一年内已从 25% 提升至 50%,有效释放了开发人员的生产力。 动态人才盘点与匹配 流程自动化为组织敏捷性创造了条件。为了支持更加柔性的组织架构,企业需要将人才数据在线化,实现动态盘点与匹配。阿里云通过智能化方式为人才提炼标签,其核心目标是:“随时找到匹配的人才,来之即战,战之即散”。这种模式打破了传统组织架构的壁垒,使人才资源能够根据业务需求进行快速、灵活的调配。 ‘组织仪表盘’:将管理直觉升级为数据驱动的实时洞察 数字化工具能够辅助管理者实时掌控组织的健康状况。小米集团为此打造了**‘组织档案’**系统,并将其形象地比喻为“操作系统的命令行”。该工具整合了成本、招聘进度、关键人群状态等多维度数据,帮助管理者实时、全面地掌控组织的运行状态,为科学决策提供了坚实的数据支持。 智能决策辅助:提升一线管理的精度与敏锐度 AI 还能辅助一线管理者进行决策和资源调优,提升管理的精细度。阿里云通过 OKR 智能分析与反馈系统,审视组织内目标承接的一致性。同时,其推出的**‘组织探针’**工具,能够帮助管理者实时感知“组织温度”,即员工与团队的工作状态,从而为管理决策提供更敏锐、更及时的洞察。 拥抱变革,构建 AI 时代的组织新范式 通过对领英峰会上多个出海企业案例的深度解析,一个清晰的战略蓝图浮出水面:AI 正在从根本上重塑人力资源管理,并催生一种全新的组织范式。对于每一位企业领导者而言,拥抱这一变革已非选择,而是生存与发展的必然要求。 组织本质的进化:从静态结构到动态生命体。 AI 时代的组织必须具备自适应、自调整、自学习的能力。它不再是一个固化的科层结构,而是一个能够感知、决策、行动和持续进化的生命体,正如阿里云所追求的“AI 时代的组织操作系统”。这要求管理者必须从传统的“结构设计者”转变为“系统进化官”,其核心任务是构建一个能够自我优化的组织生命体。 人才未来的趋势:从执行者到人机协同的创造者。 一个已被广泛认同的观点是:未来人不会被 AI 替代,但不会使用 AI 的人一定会被会使用 AI 的人替代。在此背景下,管理者的角色必须从传统的管控者转变为“企业操作系统的架构师”。其核心职责不再是分配任务,而是设计一个能够激发个体潜能、促进持续学习、并实现高效人机协同的机制。 最终的价值展望:回归于人,赋能于人。 AI 技术的最终目的,是赋能于人,而非取代人。它旨在将员工从重复性劳动中解放出来,让每个人的时间更有意义,让每个员工的独特贡献被看见。通过高效的人机协同,企业能够创造一个更有活力、更有创造力的新型组织,最终实现个体价值与组织价值的共同成长。  
    人机协同
    2025年11月25日
  • 人机协同
    【美国】AI招聘公司Alleviate Health获得430万美元种子轮融资,加速临床患者招募 总部位于北卡罗来纳州达勒姆市的AI招募公司Alleviate Health宣布完成430万美元种子轮融资,该平台致力于加速临床研究机构的患者招募进程。 本轮融资由安德森·霍洛维茨基金领投,Jack Altman(Alt Capital)、Ali Rowghani(First Harmonic)跟投,Sajith Wickramasekara(Benchling)、Trey Holterman(Tennr)、Josh Miller(Gradient Health)、Max Cohen(Sprinter Health)及Christophe Rimann(Camber)参与投资。 公司计划利用这笔资金扩大运营规模并加强研发投入。 Alleviate已与美国排名前15的试验中心网络中的7家建立合作,客户包括Alcanza、CenExel、M3 Wake、Centricity、Eximia等众多机构。 过去一年间,该公司支持美国和加拿大190余家试验中心完成50万次患者互动,助力加速推进300余项试验的招募进程。 关于Alleviate Health 在首席执行官萨斯维克·布姆佩利和首席技术官约翰·徐的领导下,Alleviate Health通过对话式人工智能加速招募进程——该技术通过短信对患者进行预筛选,使研究站点能大幅提升招募效率。其解决方案提供“人机协同”式人工智能代理,通过短信和语音渠道全天候与患者互动,根据研究方案验证患者资格,并安排面诊与电话沟通。公司在关键节点引入招募团队,既保留临床试验招募中至关重要的人性化服务,又通过自动化处理重复性工作流程,使效率提升十倍。所有交互数据、患者偏好及医疗信息均录入专为临床研究设计的CRM系统,助力研究机构优化未来招募流程及整体转化漏斗。
    人机协同
    2025年10月15日