Agents, Robots, and Us:在AI智能体时代,HR必须主导组织能力重塑HRTech概述:在AI时代,人类与机器之间不再是替代关系,而是“技能伙伴关系(Skill Partnerships)”。随着智能体(Agents)、机器人和生成式AI的普及,人类逐渐从任务执行者转变为负责目标设定、判断、统筹与监督的“编排者”,这也成为未来最重要的职业能力之一。AI 不会取代 HR,但会迫使 HR 完成一次“从人员管理者到组织能力架构师”的进化。未来最重要的HR能力将不是招聘、绩效或薪酬,而是构建人机协同体系的能力,是设计组织未来工作的能力,是引导技术发挥最大效能的能力。
更多请关注 HR Tech,为你带来全球最新 HR 科技资讯。
人工智能进入第三阶段的跃迁——从工具化 AI,走向可执行任务的智能体(Agents)与可自主协作的机器人系统。这一转变正在深刻改变企业的运作方式,也正在重新定义工作的本质。麦肯锡的《Agents, Robots, and Us》这一报告揭示并提供了一个高度前瞻且系统性的框架,它明确指出:进入智能体时代后,人类与AI之间的关系,从传统的工具使用,转向更复杂的技能伙伴关系(Skill Partnerships)。组织不再依赖人类执行任务,而是依赖人类设计并编排人机协同的工作体系。
这一趋势不仅是技术层面的升级,更是组织能力的重构,是企业效率模型、治理模式、岗位结构和人才能力体系的全面重写。在这场变革中,最需要承担主导角色的,不是技术部门,而是 HR。因为真正被重塑的是“工作”本身,而工作结构的设计权、人才能力模型的定义权、岗位与流程的重构权,都属于人力资源。
引言:当AI成为“执行者”,人类的角色必须重新定义
过去十年,企业对于人工智能的理解主要聚焦在自动化、效率提升和任务加速等工具型价值。然而进入智能体时代后,AI 不再只是执行“指令”,它拥有理解上下文、规划任务步骤、根据目标进行推演和决策建议的能力。换句话说,AI第一次具备了可独立承担任务链中部分环节的能力。
当AI成为“执行者”,人类从链条中的“操作员”变成“编排者(Orchestrator)”。在这一结构变化下,组织能力的核心逻辑也随之重写。工作不再由角色驱动,而是由任务驱动;岗位不再固定,而是由任务组合实时变化;技能不再是个人工具,而是人机协作体系中的一部分。
这也意味着,传统的岗位描述、能力模型、流程制度、绩效体系,都将在 AI 的推动下重新定义。HR 的角色也从“管理人”扩展为“设计工作”和“协调人机系统”。面对这样的结构性变化,HR 需要成为组织新的架构师,让技术与人力在统一的治理和流程体系下协作。
一、人机技能伙伴关系:从执行到编排的根本性跃迁
报告最重要的观点之一,是提出了三种典型的技能伙伴关系模式:自动化、增强与编排。这三个模式不仅是技术使用的路径,也代表了不同阶段的组织成熟度。
自动化模式主要解决重复性任务,让工具代替人类执行标准化流程。这一模式已经在薪酬、行政、文档处理等领域普及,并成为企业降本增效的基础。
增强模式则意味着 AI 提升人类的判断效率。这是目前大多数专业工作者最直接感受到的变化,例如招聘中 AI 的候选人筛查、绩效过程中 AI 带来的行为洞察、组织发展中基于AI的模拟与预测。增强模式不是替代,而是放大人的专业价值。
最值得关注的是编排模式,这是未来十年的核心能力方向,也是组织必须最早布局的能力建设。编排模式中,人类成为“任务的设计者”,把目标拆解为一系列步骤,再将其中的部分交给 AI 和机器系统执行,并在关键节点做出监督和判断。此时,任务不再由单一角色完成,而是由“人类 + AI + 自动化工具”组成的动态团队完成。
这一模式要求组织具备完全不同的能力结构:流程知识、判断力、沟通协调能力、AI素养、跨系统协作能力、风险洞察和质量监督能力等。它也要求岗位从固定性变为开放性,通过任务来动态调整工作内容。
正如报告提出的核心观点,未来组织的生产力,并不是来自于某一个强大的智能体,而来自于人类与 AI 的协同效率,这正是“Skill Partnerships”的本质。
二、AI时代的五类核心技能:从个人竞争力到组织竞争力的全局转向
报告以系统化方式指出,进入智能体时代后,人类必须掌握五大类核心技能。这五类技能不仅适用于个人成长,也是组织能力模型重构的基础。
认知技能作为未来最核心的能力,依然是人区别于机器最重要的来源。复杂问题解决、批判性思维、反事实推演和情境判断,是 AI 无法完全替代的领域。随着 AI 能承担更多操作性任务,人类在认知层面的价值反而被放大。
人际技能在 AI 时代的重要性不减反增。当工具承担更多信息处理任务后,人与人的沟通、协作、领导与文化建设变得更关键。尤其在组织变革时期,人际技能是推动员工转型、推动跨部门协作的基础。
技术与数据技能不再是技术部门专属,而成为全员工最低限度的能力要求。报告强调,AI素养是未来的通用技能,类似于当年电脑操作技能的普及。员工不需要会写代码,但必须懂得如何向 AI 发出高质量指令、理解AI的局限与误差、具备基本的数据判断能力。
系统性技能将成为组织未来最稀缺的能力之一,尤其是编排型岗位依赖于流程设计、治理体系、风险控制、质量监督和伦理判断等能力。这些能力不仅要求跨专业知识,也要求对组织运作系统有深刻理解。
自我管理技能是适应 AI 时代变化速度的重要基础。AI 使知识快速更新,人类唯一的可持续优势是持续学习、保持好奇心与心理韧性。组织也必须培育可持续学习文化,才能支撑员工应对变化。
这些技能不是独立存在,而是构成未来岗位、任务和组织结构的底层能力模块。HR 的任务,是让整个组织具备这些能力,而不是只培养少数人才。
三、岗位的未来:由“固定职位”向“任务组合”迁移
报告的另一核心观点,是岗位从固定结构转向任务组合化,这将改变 HR 对岗位、绩效、招聘和人才发展的全部方法。
传统岗位是职责驱动,即每个岗位有明确的范围和职责清单。但 AI 的加入使任务可以被重新组合。某些任务可完全交由AI处理,某些任务则由人类判断,另一些任务则需要人机共同协作。因此岗位从静态的“职责包”转向动态的“任务包”。
这一变化意味着,岗位将更频繁地依业务需求调整,角色的重要性下降,任务的重要性上升。人才的核心价值也从“我是谁”转向“我能完成哪些任务”。任务成为资源分配的单位,员工成为任务的编排者,而 AI 成为任务的执行者或共同参与者。
这种模式要求 HR 完全重写岗位描述,从“职责清单”式的描述,转为“任务链条与人机分工”的结构化设计。同时,绩效体系也需从“是否完成职责”转向“是否有效建立人机协作体系并实现业务成果”。
组织结构也会随之扁平化,跨团队协作提升,角色界线模糊,传统的部门式分工被更灵活的任务流所替代。
四、在人机协作时代,HR必须承担战略主导权
技术部门可以部署 AI 工具,但“工作”仍属于 HR 的领域。真正决定 AI 能否在组织产生价值的,并不是算法,而是流程设计、人才能力和治理体系——这些全部属于 HR 的战略范畴。
AI 进入组织后,最需要 HR 主导的三个关键领域包括岗位重设计、能力体系重建与组织流程重写。
岗位重设计需要 HR 理解业务目标,将工作拆解为可由 AI 完成的任务、必须由人类完成的任务和需要人机协作的任务。这个过程必须由 HR 牵头,因为它涉及组织的整体工作方式,而不仅是技术部署。
能力体系重建要求 HR 新定义人才的底层能力结构,并让 AI 素养、编排能力、系统性思维、人际协作和认知能力成为组织投资的重点。这将影响招聘、培训、绩效与晋升等关键制度。
组织流程重写需要 HR 与业务共同重新定义流程节点和治理机制,使 AI 能嵌入真实业务,并真正成为协作主体,而不是附加资源。尤其是 AI 的质量监督、伦理判断和风险控制,必须纳入正式的管理体系,这本质上是一个组织治理任务,而非技术任务。
AI 驱动的组织能力重塑,是一次深刻的战略转型。HR 唯一能让技术变成生产力的方法,是成为组织的“AI编排者”,让人机系统在统一的结构下协同运行。
五、迈向AI智能体时代的组织:HR的使命与未来十年的工作重点
未来组织的核心竞争力,不取决于谁拥有更多AI,而取决于谁拥有更强的人机协作能力。一家企业若想在未来十年保持竞争力,必须从现在开始构建“AI Ready”的组织结构,使人类与 AI 的技能伙伴关系成为基础能力。
这一转型需要从顶层战略、组织结构、岗位设计、能力体系、文化塑造与治理机制多维度同步开展。HR 是唯一能够跨越组织横向与纵向结构,并同时触达人、流程与文化的职能部门,也因此成为这场变革的核心驱动力。
AI 不会取代 HR,但会迫使 HR 完成一次“从人员管理者到组织能力架构师”的进化。未来最重要的HR能力将不是招聘、绩效或薪酬,而是构建人机协同体系的能力,是设计组织未来工作的能力,是引导技术发挥最大效能的能力。
智能体时代已经到来。技术的力量不可逆转,而组织能力的重塑必须从现在开始。
HR在AI时代的三大使命
第一,推动岗位与任务的全面重构。通过将工作拆解为可由AI执行、可由人判断和需要协作的任务,让组织的工作结构与技术能力相匹配。
第二,重建人才能力模型。把AI素养、编排能力、系统思维与持续学习能力纳入全员基本能力,让每一位员工都能与AI协作。
第三,构建组织的AI治理与协作体系。让AI成为流程中的正式参与者,而不是附属工具,建立质量监督、伦理判断与风险控制机制。
在智能体时代,HR不是应对者,而是定义者;不是配合者,而是主导者。未来十年的组织能力竞争,将由HR决定。
麦肯锡
2025年12月01日
麦肯锡
【伦敦】人工智能招聘初创公司Ethos 为人工智能技能匹配服务融资 325万美元总部位于伦敦的人工智能招聘初创公司 Ethos 在 General Catalyst 领投的一轮融资中筹集融资 325 万美元。该公司利用人工智能(AI)帮助企业轻松找到专业专家,减少了企业通常面临的漫长而复杂的过程。
Ethos 是一家总部位于伦敦的初创公司,利用 AI 为个人匹配有意义的机会,该公司宣布了一轮 300 万欧元的融资,以在由资历、影响力和嘈杂的自我推销主导的网络世界中展示真正的专业知识。
本轮融资由 General Catalyst 领投,8VC、Conviction、Common Magic、Interface 以及红杉资本、a16z 的知名天使投资人以及麦肯锡和软银等公司的高级合伙人也参与了本轮融资。
“我们使用尖端的 AI 在几秒钟内评估数百万个数据点,并了解特定的领域,”Ethos 补充道。“从阅读学术论文、GitHub 存储库、博客文章、播客到作品集,AI 可以大规模评估人类专业知识的全部范围。”
Ethos 由麦肯锡前顾问和软银作员 James Lo 和 Google DeepMind 的人工智能研究员 Daniel J. Mankowitz 创立,正在解决商业世界持续存在的挫折之一:在大量个人资料中识别真正知识渊博的人。
他们的平台使公司能够通过使用 AI 读取和评估从学术论文和 GitHub 存储库到博客文章和播客等一系列数字来源的数据来大规模寻找专家。
这家初创公司通过为公司提供自动化专家网络而成立。公司现在可以描述他们需要的知识并快速访问相关的专家档案,而不是像传统专家网络那样等待数天才能手动寻找候选人。
Ethos 已被超过 25 家全球投资公司和咨询公司使用,可在平台上实现付费咨询电话,并计划扩展到将顾问与初创公司联系起来,将演讲者与会议联系起来,将人才与公司联系起来。
Ethos 的算法构建了经济知识图谱,追踪公共数据,不仅可以确定某人在哪里工作,还可以确定他们做出了什么贡献。它旨在用对个人专业知识的更细致的理解来取代大学声望和职称等生硬的指标。
“在令人分心的噪音海洋中,我们将 Ethos 打造成一个深思熟虑的倾听者:了解公司和人们想要什么,并将它们相互匹配,”Ethos 补充道。“我们相信,将人与机会相匹配是整个人类经济的基础。解决这个问题将为大型行业带来巨大的变化。
该公司认为其当前的专家网络产品只是一个开始。随着时间的推移,相同的技术可以推动更好的招聘、市场研究、演讲活动等。
目前,重点仍然是专家电话——这是财务和咨询领域尽职调查和战略的关键部分——Ethos 似乎已经在缩短时间并提高比赛质量。
Ethos 不是增强最响亮声音的信号,而是旨在为那些拥有真正实质的人提供声音和机会。
麦肯锡
2025年03月31日
麦肯锡
麦肯锡:AI赋能职场,企业如何跨越管理障碍,实现智能化未来?员工对 AI 的适应速度远超领导层的预期
AI 如何重塑职场?
人工智能(AI)正在以惊人的速度重塑职场生态,许多企业正试图利用 AI 提高生产力、优化决策流程并增强市场竞争力。然而,AI 技术的广泛应用远非一蹴而就,企业的 AI 部署不仅涉及技术升级,更考验管理者的战略眼光和执行力。
麦肯锡的《Superagency in the Workplace》 这份报告深入研究了 AI 在职场中的应用现状,基于对 3,613 名员工和 238 名 C 级高管 的调查,揭示了企业在 AI 落地过程中的机遇与挑战。报告认为,AI 在职场的变革潜力堪比蒸汽机之于工业革命,但当前的最大障碍并非技术问题,而是领导层的行动力不足。
尽管 92% 的企业计划在未来三年增加 AI 投资,但只有 1% 认为自己 AI 发展成熟,表明大多数企业仍停留在 AI 试点阶段,尚未实现全面部署。更值得注意的是,报告发现员工对 AI 的接受度远超管理层的预期,但企业的 AI 发展速度依然滞后。领导者的犹豫和执行力缺失,正成为 AI 规模化应用的最大瓶颈。
本文将从员工接受度、领导层挑战、组织架构变革、AI 治理、商业价值实现等多个维度,介绍报告的核心观点,并补充对 AI 发展的进一步思考。
一、员工比领导更快接受 AI,企业行动缓慢
报告的核心发现之一是:员工已经在积极使用 AI,而领导者仍然低估了 AI 的普及度。
数据显示:
员工使用 AI 的频率比领导层预期高出 3 倍,但许多企业尚未提供系统性培训;
70% 以上的员工认为 AI 在未来两年内将改变至少 30% 的工作内容;
94% 的员工和 99% 的高管都表示对 AI 工具有一定熟悉度,但只有 1% 的企业认为 AI 应用已成熟。
这一现象表明,AI 在企业中的主要障碍并非员工适应能力,而是管理层的滞后决策。许多企业高管仍然停留在探索 AI 价值的阶段,而员工已经在日常工作中广泛使用 AI 工具,如自动生成文档、数据分析、代码编写等。员工在推动 AI 发展方面的主动性,远远超出管理层的认知。
然而,企业未能为员工提供足够的 AI 培训和资源,导致 AI 的应用仍然停留在浅层次,难以转化为真正的生产力提升。例如,48% 的员工认为 AI 培训是 AI 规模化应用的关键,但许多公司仍未建立 AI 学习机制。企业如果不采取措施缩小这一认知鸿沟,可能会错失 AI 带来的长期竞争优势。
二、AI 领导力挑战:速度焦虑与执行落差
尽管 AI 的发展潜力巨大,但报告指出,47% 的企业高管认为公司 AI 发展过于缓慢,主要原因包括:
AI 技术成本的不确定性:短期 ROI(投资回报率)难以量化,导致企业不敢大规模投资;
AI 人才短缺:AI 相关技术人才供不应求,企业缺乏相应的招聘和培养体系;
监管与安全问题:企业在数据隐私、算法透明度等方面的担忧阻碍了 AI 落地。
这种“速度焦虑”让企业在 AI 发展过程中陷入试点—停滞—观望的循环:
试点阶段:部分企业已启动 AI 试点项目,如客服自动化、数据分析等;
停滞阶段:由于短期收益不确定,试点项目难以规模化推广;
观望阶段:企业倾向于等待行业先行者经验,而非主动探索 AI 的商业价值。
报告强调,AI 的落地不仅是技术问题,更是企业管理问题。领导者需要具备更强的战略决心,加快 AI 投资,并明确 AI 在企业中的角色,才能真正推动 AI 规模化应用。
三、如何实现 AI 规模化落地?
1. AI 人才培养
AI 的大规模应用依赖于系统性的 AI 人才培训。然而,报告发现,近一半的员工认为企业提供的 AI 支持有限。企业需要采取措施:
建立 AI 培训体系,涵盖 AI 基础知识、业务应用和 AI 伦理等内容;
推广 AI 试点项目,让员工亲身参与 AI 工具的开发和使用;
设立 AI 激励机制,鼓励员工利用 AI 提升工作效率。
2. 组织架构调整
AI 不能仅仅作为 IT 部门的创新项目,而应当成为企业整体战略的一部分。报告建议:
设立 AI 战略委员会,确保 AI 发展与企业长期战略保持一致;
推动 AI 在各业务部门落地,提升 AI 在实际业务流程中的应用深度;
强化 AI 风险管理,确保 AI 应用在数据安全和监管方面的合规性。
3. AI 治理:平衡速度与安全
虽然 AI 带来了极大的商业价值,但报告指出,企业在 AI 治理方面仍存在诸多挑战:
51% 的员工担心 AI 可能带来的网络安全风险;
43% 的员工关注 AI 可能导致的数据泄露;
企业需要建立 AI 伦理标准,确保 AI 透明、公正、合规。
四、AI 时代的商业价值:企业如何真正实现 ROI?
尽管企业对 AI 充满期待,但报告显示,目前仅 19% 的企业 AI 投资带来了 5% 以上的收入增长,表明大多数企业的 AI 应用尚未转化为可观的商业回报。为了提升 AI 价值,企业需要:
从“技术驱动”转向“业务驱动”,确保 AI 应用直接创造商业价值;
优化 AI 目标设定,明确 AI 在核心业务中的定位;
加强 AI 应用场景探索,特别是在客户服务、供应链管理等高回报领域进行深入部署。
AI 成败的关键在于管理层
AI 的成功不仅依赖技术本身,更取决于企业领导者的执行力和战略眼光。企业若要真正迈向 AI 时代,需要:
加速 AI 战略落地,推动组织变革;
加强 AI 人才培养,提高员工 AI 适应能力;
建立 AI 治理体系,确保 AI 安全合规发展。
在 AI 时代,最危险的不是迈得太快,而是思考得太小、行动得太慢。
附录:《Superagency in the Workplace》 下载
麦肯锡:工作的未来:下一步是什么? The future of work: What next?
工作的未来:下一步是什么?
将未来的工作视为三个共生要素的组合是有帮助的:工作、劳动力和工作场所(work, the workforce, and the workplace.)。
自工业革命开始以来,人们一直在努力预测工作的未来。对机器会及时取代人类的担忧变成了对机器人和人工智能(AI)的担忧。但在大流行之前,很少有公司有效地深入考虑过这个问题。现在这样做有望为企业开辟一系列机会,以更好地向所有利益相关者提供其价值主张,建立有竞争力的人才能力,并适应工作性质的转变。
当组织探索 COVID-19 后工作的未来时,它有助于将其视为塑造组织的三个共生元素的组合:工作、劳动力和工作场所(work, the workforce, and the workplace.)。
1、首先阐明工作的性质。工作的性质基于两个主要的问题,组织应该清楚地表达出来。
第一个问题是 "我们如何赚钱"?这可以归结为一个公司的价值议程和如何实现它。一些行动,如更好的采购或精益管理,侧重于维持企业的核心价值。其他行动则侧重于产生价值的新方法,如建立一个电子商务平台。
第二个问题是围绕如何完成工作。这就要求组织在如何 "运作 "以实现其价值议程方面变得犀利。这包括投资资本(财务、人力和技术);实施流程效率;以及通过自动化、数字化或人工智能采用技术使工作得以实现。有了一个明确的北极星,公司就能对其投资进行战略调整。
随着公司开始将这两个问题的答案与美元价值联系起来,即投资和回报,一套明确的组织优先事项和推动因素将会出现,以帮助实现未来的战略愿景。
2、建立未来的员工队伍。目前的人才争夺战强调了人是一个组织最宝贵的资产。这里的关键问题是 "你有谁(供应)?"和 "你需要谁(需求)?" 了解供应,首先要对现有的人才和他们的技能进行评估。要了解需求,企业必须首先在人才和其价值议程之间建立明确的联系。对比人才的供应和需求,将清楚地揭示出他们所拥有的技能库的长处和短处。这对竞争的影响是深远的。那些期望从数字化转型或有前途的新战略中获益的组织,如果缺乏将计划付诸实施的人才,就不会走得太远。今天看似恼人的人才差距,在不远的将来可能会成为致命的竞争责任。
3、重新想象工作场所。工作场所是物理位置和一个组织的规范和工作方式的结合。主要有两种方法--把人带到工作中去或把工作带到人的身边。自从工业化开始以来,前一种方法一直是规则,导致了大规模的工厂和工业中心的建立,人们聚集在一起进行工作。
然而,在过去的几十年里,在技术进步的推动下,出现了将工作交给人的稳定而温和的转变。一旦大流行病严重限制了公司把人带到工作岗位上的能力,几乎在一夜之间发生了向远程工作和灵活时间表的巨大变化。这将是大流行病的一个持久的遗产,不仅对物理工作空间和足迹,而且对工作规范和方式,包括长期的远程模式;对员工福利、福祉和包容性的更大关注;以及生产力。
为了充分准备未来的工作,各组织需要充分了解他们的工作性质,需要谁来完成这些工作,以及这些工作在哪里完成。把握好这一点将决定后大流行世界的赢家。
来自麦肯锡的见解仅供参考。
By Bill Schaninger
Designs and manages large-scale organizational transformations, strengthening business performance through enhanced culture, values, leadership, and talent systems
By Kartik Sharma
Partners with clients across a variety of sectors on topics regarding analytics-led organizational transformations, with expertise in future of work and talent management to drive lasting impact