• Human-AI Collaboration
    Agents, Robots, and Us:在AI智能体时代,HR必须主导组织能力重塑 HRTech概述:在AI时代,人类与机器之间不再是替代关系,而是“技能伙伴关系(Skill Partnerships)”。随着智能体(Agents)、机器人和生成式AI的普及,人类逐渐从任务执行者转变为负责目标设定、判断、统筹与监督的“编排者”,这也成为未来最重要的职业能力之一。AI 不会取代 HR,但会迫使 HR 完成一次“从人员管理者到组织能力架构师”的进化。未来最重要的HR能力将不是招聘、绩效或薪酬,而是构建人机协同体系的能力,是设计组织未来工作的能力,是引导技术发挥最大效能的能力。 更多请关注 HR Tech,为你带来全球最新 HR 科技资讯。 人工智能进入第三阶段的跃迁——从工具化 AI,走向可执行任务的智能体(Agents)与可自主协作的机器人系统。这一转变正在深刻改变企业的运作方式,也正在重新定义工作的本质。麦肯锡的《Agents, Robots, and Us》这一报告揭示并提供了一个高度前瞻且系统性的框架,它明确指出:进入智能体时代后,人类与AI之间的关系,从传统的工具使用,转向更复杂的技能伙伴关系(Skill Partnerships)。组织不再依赖人类执行任务,而是依赖人类设计并编排人机协同的工作体系。 这一趋势不仅是技术层面的升级,更是组织能力的重构,是企业效率模型、治理模式、岗位结构和人才能力体系的全面重写。在这场变革中,最需要承担主导角色的,不是技术部门,而是 HR。因为真正被重塑的是“工作”本身,而工作结构的设计权、人才能力模型的定义权、岗位与流程的重构权,都属于人力资源。 引言:当AI成为“执行者”,人类的角色必须重新定义 过去十年,企业对于人工智能的理解主要聚焦在自动化、效率提升和任务加速等工具型价值。然而进入智能体时代后,AI 不再只是执行“指令”,它拥有理解上下文、规划任务步骤、根据目标进行推演和决策建议的能力。换句话说,AI第一次具备了可独立承担任务链中部分环节的能力。 当AI成为“执行者”,人类从链条中的“操作员”变成“编排者(Orchestrator)”。在这一结构变化下,组织能力的核心逻辑也随之重写。工作不再由角色驱动,而是由任务驱动;岗位不再固定,而是由任务组合实时变化;技能不再是个人工具,而是人机协作体系中的一部分。 这也意味着,传统的岗位描述、能力模型、流程制度、绩效体系,都将在 AI 的推动下重新定义。HR 的角色也从“管理人”扩展为“设计工作”和“协调人机系统”。面对这样的结构性变化,HR 需要成为组织新的架构师,让技术与人力在统一的治理和流程体系下协作。 一、人机技能伙伴关系:从执行到编排的根本性跃迁 报告最重要的观点之一,是提出了三种典型的技能伙伴关系模式:自动化、增强与编排。这三个模式不仅是技术使用的路径,也代表了不同阶段的组织成熟度。 自动化模式主要解决重复性任务,让工具代替人类执行标准化流程。这一模式已经在薪酬、行政、文档处理等领域普及,并成为企业降本增效的基础。 增强模式则意味着 AI 提升人类的判断效率。这是目前大多数专业工作者最直接感受到的变化,例如招聘中 AI 的候选人筛查、绩效过程中 AI 带来的行为洞察、组织发展中基于AI的模拟与预测。增强模式不是替代,而是放大人的专业价值。 最值得关注的是编排模式,这是未来十年的核心能力方向,也是组织必须最早布局的能力建设。编排模式中,人类成为“任务的设计者”,把目标拆解为一系列步骤,再将其中的部分交给 AI 和机器系统执行,并在关键节点做出监督和判断。此时,任务不再由单一角色完成,而是由“人类 + AI + 自动化工具”组成的动态团队完成。 这一模式要求组织具备完全不同的能力结构:流程知识、判断力、沟通协调能力、AI素养、跨系统协作能力、风险洞察和质量监督能力等。它也要求岗位从固定性变为开放性,通过任务来动态调整工作内容。 正如报告提出的核心观点,未来组织的生产力,并不是来自于某一个强大的智能体,而来自于人类与 AI 的协同效率,这正是“Skill Partnerships”的本质。 二、AI时代的五类核心技能:从个人竞争力到组织竞争力的全局转向 报告以系统化方式指出,进入智能体时代后,人类必须掌握五大类核心技能。这五类技能不仅适用于个人成长,也是组织能力模型重构的基础。 认知技能作为未来最核心的能力,依然是人区别于机器最重要的来源。复杂问题解决、批判性思维、反事实推演和情境判断,是 AI 无法完全替代的领域。随着 AI 能承担更多操作性任务,人类在认知层面的价值反而被放大。 人际技能在 AI 时代的重要性不减反增。当工具承担更多信息处理任务后,人与人的沟通、协作、领导与文化建设变得更关键。尤其在组织变革时期,人际技能是推动员工转型、推动跨部门协作的基础。 技术与数据技能不再是技术部门专属,而成为全员工最低限度的能力要求。报告强调,AI素养是未来的通用技能,类似于当年电脑操作技能的普及。员工不需要会写代码,但必须懂得如何向 AI 发出高质量指令、理解AI的局限与误差、具备基本的数据判断能力。 系统性技能将成为组织未来最稀缺的能力之一,尤其是编排型岗位依赖于流程设计、治理体系、风险控制、质量监督和伦理判断等能力。这些能力不仅要求跨专业知识,也要求对组织运作系统有深刻理解。 自我管理技能是适应 AI 时代变化速度的重要基础。AI 使知识快速更新,人类唯一的可持续优势是持续学习、保持好奇心与心理韧性。组织也必须培育可持续学习文化,才能支撑员工应对变化。 这些技能不是独立存在,而是构成未来岗位、任务和组织结构的底层能力模块。HR 的任务,是让整个组织具备这些能力,而不是只培养少数人才。 三、岗位的未来:由“固定职位”向“任务组合”迁移 报告的另一核心观点,是岗位从固定结构转向任务组合化,这将改变 HR 对岗位、绩效、招聘和人才发展的全部方法。 传统岗位是职责驱动,即每个岗位有明确的范围和职责清单。但 AI 的加入使任务可以被重新组合。某些任务可完全交由AI处理,某些任务则由人类判断,另一些任务则需要人机共同协作。因此岗位从静态的“职责包”转向动态的“任务包”。 这一变化意味着,岗位将更频繁地依业务需求调整,角色的重要性下降,任务的重要性上升。人才的核心价值也从“我是谁”转向“我能完成哪些任务”。任务成为资源分配的单位,员工成为任务的编排者,而 AI 成为任务的执行者或共同参与者。 这种模式要求 HR 完全重写岗位描述,从“职责清单”式的描述,转为“任务链条与人机分工”的结构化设计。同时,绩效体系也需从“是否完成职责”转向“是否有效建立人机协作体系并实现业务成果”。 组织结构也会随之扁平化,跨团队协作提升,角色界线模糊,传统的部门式分工被更灵活的任务流所替代。 四、在人机协作时代,HR必须承担战略主导权 技术部门可以部署 AI 工具,但“工作”仍属于 HR 的领域。真正决定 AI 能否在组织产生价值的,并不是算法,而是流程设计、人才能力和治理体系——这些全部属于 HR 的战略范畴。 AI 进入组织后,最需要 HR 主导的三个关键领域包括岗位重设计、能力体系重建与组织流程重写。 岗位重设计需要 HR 理解业务目标,将工作拆解为可由 AI 完成的任务、必须由人类完成的任务和需要人机协作的任务。这个过程必须由 HR 牵头,因为它涉及组织的整体工作方式,而不仅是技术部署。 能力体系重建要求 HR 新定义人才的底层能力结构,并让 AI 素养、编排能力、系统性思维、人际协作和认知能力成为组织投资的重点。这将影响招聘、培训、绩效与晋升等关键制度。 组织流程重写需要 HR 与业务共同重新定义流程节点和治理机制,使 AI 能嵌入真实业务,并真正成为协作主体,而不是附加资源。尤其是 AI 的质量监督、伦理判断和风险控制,必须纳入正式的管理体系,这本质上是一个组织治理任务,而非技术任务。 AI 驱动的组织能力重塑,是一次深刻的战略转型。HR 唯一能让技术变成生产力的方法,是成为组织的“AI编排者”,让人机系统在统一的结构下协同运行。 五、迈向AI智能体时代的组织:HR的使命与未来十年的工作重点 未来组织的核心竞争力,不取决于谁拥有更多AI,而取决于谁拥有更强的人机协作能力。一家企业若想在未来十年保持竞争力,必须从现在开始构建“AI Ready”的组织结构,使人类与 AI 的技能伙伴关系成为基础能力。 这一转型需要从顶层战略、组织结构、岗位设计、能力体系、文化塑造与治理机制多维度同步开展。HR 是唯一能够跨越组织横向与纵向结构,并同时触达人、流程与文化的职能部门,也因此成为这场变革的核心驱动力。 AI 不会取代 HR,但会迫使 HR 完成一次“从人员管理者到组织能力架构师”的进化。未来最重要的HR能力将不是招聘、绩效或薪酬,而是构建人机协同体系的能力,是设计组织未来工作的能力,是引导技术发挥最大效能的能力。 智能体时代已经到来。技术的力量不可逆转,而组织能力的重塑必须从现在开始。 HR在AI时代的三大使命 第一,推动岗位与任务的全面重构。通过将工作拆解为可由AI执行、可由人判断和需要协作的任务,让组织的工作结构与技术能力相匹配。 第二,重建人才能力模型。把AI素养、编排能力、系统思维与持续学习能力纳入全员基本能力,让每一位员工都能与AI协作。 第三,构建组织的AI治理与协作体系。让AI成为流程中的正式参与者,而不是附属工具,建立质量监督、伦理判断与风险控制机制。 在智能体时代,HR不是应对者,而是定义者;不是配合者,而是主导者。未来十年的组织能力竞争,将由HR决定。
    Human-AI Collaboration
    2025年12月01日
  • Human-AI Collaboration
    微软最新方法论:用 AI 重塑组织,迈向前沿企业(Frontier Firm) HRTech概述:微软发布全新《Becoming a Frontier Firm》框架,系统总结其 AI 转型经验,提出五大关键洞察:让知识工作可见化、明确风险边界、构建合适的 AI 工具组合、重塑角色与组织结构、建立持续实验文化。微软指出,AI 转型不是简单引入工具,而是对工作方式、流程与组织能力的全面重构。 在实践路径上,微软提供三条可复制模式:角色加速、流程重塑和 AI 原生孵化。从提升单个角色的效率,到重塑端到端流程,再到从零构建 AI 驱动的新型团队结构,为企业提供了不同层级的落地方案。AI 将成为组织竞争力的基础能力。迈向前沿企业,需要技术、流程与人的协同演进。微软的方法论,为企业提供了一个清晰可执行的转型路线图。 视频解读关注视频号:HRTech 微软万字报告揭秘:未来企业如何用AI重塑一切?这三大法则你必须知道 当前,企业界正普遍面临一个严峻的AI挑战:许多公司都在进行各种AI实验,但很少有公司能将这些零散的AI活动,转化为可衡量的、实实在在的业务影响。太多项目陷入了“试点炼狱”(pilot purgatory),最终只留下一堆“看起来很酷但无法扩展、无法落地、也无足轻重的演示”(shiny demos that don't scale, don't stick, and don't matter)。 为了应对这一挑战,微软提出了一个全新的组织模式——“前沿企业”(Frontier Firm)。这是一种由人领导、由智能体(Agent)运营的组织,它们像购买电力一样购买智能,并像滚雪球般让其价值复利增长(human-led, agent-operated organizations that buy intelligence like electricity... and compound it like interest)。这不仅是一个概念,更是企业驾驭AI浪潮的最终答案。 本文将从微软的深度报告中,为您提炼出最具冲击力和参考价值的三大核心法则,以及三种可落地的行动路径,帮助您理解如何将AI从“试点项目”真正转变为企业发展的核心引擎。 微软的分析揭示,“前沿企业”之所以能脱颖而出,并非依赖于其技术堆栈,而是源于其对三大基础运营法则的严格遵守。  法则一:让“看不见”的工作“看得见” (Make the Invisible Visible) 知识型工作(Knowledge work)长期以来都面临一个根本性难题:它难以被观察、衡量和改进。你无法像观察流水线一样,去观察一个人如何谈判合同,或起草一份产品发布策略,因为真正的行动发生在无形的思维和沟通之中。而一个简单却深刻的道理是:你无法改造你看不见的东西。 这正是AI转型的起点。微软劳动力转型企业副总裁Katy George指出: “用AI进行重塑,起点并非技术,而是理解人们实际的工作方式。你无法改造你看不见的东西。” (Redesigning with AI doesn’t begin with technology. It begins with understanding how people actually work. You can’t transform what you can’t see.) “前沿企业”解决这个问题的核心方法论,就是将工作“可见化”。通过采用“生命中的一天/一周”(day-in-the-life/week-in-the-life)研究、现场观察(Gemba walks)、用户画像地图(persona mapping)、流程挖掘(process mining)、价值流图(value stream mapping)和持续改善(Kaizen)等方法,企业可以清晰地描绘出工作流程的每一步,揭示隐藏的瓶颈、延迟和交接点,从而找到AI可以发挥最大作用的具体机会。 例如,金融运营平台Ramp通过追踪其财务流程中的每一个交接环节,发现许多微小的延迟在不知不觉中累积成了巨大的时间成本。在定位了这些问题后,他们部署了AI智能体来自动匹配收据和复核审批。最终,Ramp每月能处理500万张收据,节省了整整30,000个工时,并以创纪录的速度完成账目结算。 法则二:AI不是“外挂”,而是“基础设施” (AI as Core Infrastructure) 许多公司对待AI的态度,更像是一场“创新戏剧”(innovation theater)——将其作为公关稿和投资者电话会议上的展示品。相比之下,“前沿企业”则将AI视为与电力、网络同等重要的核心基础设施,并将其深度嵌入到核心业务流程之中。 这种思维上的根本转变,意味着企业思考的问题从“我们可以在哪里增加一些自动化?”转变为“我们如何围绕AI来重新设计工作?”。只有这样,企业才能真正开始利用AI实现复合式回报,加速业务周期,并发现全新的能力。 微软提出的实践方法是“设计合适的AI解决方案集”,即根据具体的业务需求,灵活地组合使用无代码、低代码和专业代码的工具,确保技术与业务目标精准匹配。 以LinkedIn为例,他们正在重塑整个产品开发流程,让AI成为日常工作密不可分的一部分。他们将一个名为“Mae”的内部AI智能体嵌入到开发工作流中,该智能体能自动修复超过三分之一的开发者构建问题。在这种模式下,AI不再是一个需要单独打开的“外挂”工具,而开发人员也能承担起从研究、设计到编码、测试的更广泛职责,最终结果是交付速度的大幅提升和一种由AI驱动业务表现的文化。 法则三:抵达“前沿”不是终点,而是一种实践 (The Frontier is a Practice) AI转型没有终点线。“前沿企业”永远处于“公测版”(perpetual beta)状态,它们将每一个现有流程都视为一个等待验证的假设,并将每一次改进都视为下一次创新的燃料。 这一原则是如此基础,以至于它构成了微软分析的核心论点: “前沿企业不会将AI简单地叠加在现有工作之上;它们从根基上重新思考工作的完成方式。” (Frontier Firms don't layer AI on top of existing work; they rethink how work gets done from the foundation up.) 这种“持续实验的文化”并非无序的、随意的尝试。它恰恰需要结构化的实验、可靠的衡量指标和严格的治理体系,以确保创新是负责任且风险可控的。团队需要系统地学习如何设计、运行和评估实验,将好奇心转化为指数级的价值。 例如,一家金融服务机构在转型过程中,首先由CEO设定了“利用AI改善客户服务”的明确目标。随后,团队绘制了核心服务流程的每一步,并重新定义了初级和高级员工的角色。这完美体现了“由人领导、由智能体运营”的原则:AI智能体处理前期的资料分析(“智能体运营”),从而将资深专家解放出来,专注于运用判断力、同理心和战略洞察力来领导客户沟通(“由人领导”)。整个过程通过培训和激励机制来推动,并以一种“展示你的工作”(show your work)的开放方式进行追踪,确保了清晰的步骤和明确的责任。 实战手册:微软给出的三种行动路径 在理解了上述三大法则之后,企业需要具体的行动路径来将理念付诸实践。微软在其自身的转型探索中,总结出了三种可供其他公司参考的落地方法。 路径一:加速个人角色 (Accelerate Personas) 方法解释: 这种方法专注于组织内的特定角色(如销售、公关、财务分析师),通过为他们配备定制化的Copilot和智能体,将优秀员工的AI使用技巧和工作流程规模化,从而整体提升该角色的绩效。其战略意义在于,它将AI的成功从一场“个人赛”转变为一场“团体赛”。 实例:微软公关部(Microsoft Communications) 他们通过为公关专业人士绘制“一天的工作”,发现了重复性高且耗时的任务。随后,团队开发了定制化的“公关Copilot”(Communications Copilot),它能够自动化处理撰写社交媒体帖子、创作故事初稿和生成FAQ等日常任务。同时,团队还在探索使用“研究员智能体”(Researcher agent)来自动生成媒体简报。这些举措让团队能将更多精力聚焦于更具战略性的核心工作,显著提升了效率和影响力。 路径二:重塑工作流程 (Reinvent Workflows) 方法解释: 这种方法着眼于整个端到端的业务流程(如财务预测、客户支持),利用AI来重新设计整个流程,以大幅减少时间消耗、资源浪费和人力投入。 实例:微软财务部(Microsoft Finance) 财务部领导层首先确定了六个对业务至关重要的核心工作流程。然后,他们将这种自上而下的战略优先级,与来自一线员工自下而上的创新想法相结合。通过公民开发者和专业IT团队的协作,他们在关键节点上构建并实施了AI解决方案。最终,公司实现了更快的财务预测、更短的合规处理时间,并达成了收入增长速度超过员工人数增长的优异成果。 路径三:培育AI原生孵化 (Cultivate AI-first Incubation) 方法解释: 这种方法最为彻底,它采用一种“零基重设”(zero-based redesign)的思路。它由一个专家团队从零开始,以AI为核心,彻底重新设计一种全新的工作方式、团队结构和业务流程。 实例:微软行业解决方案工程部(Microsoft Industry Solutions Engineering) 为了加速交付为客户定制的解决方案,该部门创建了名为“萤火虫小队”(firefly squads)的敏捷团队。这些由资深专家组成的小组拥有端到端的项目所有权,他们采用一种实验驱动的模式,利用模块化模式和AI生成的参考解决方案进行快速原型设计和代码复用,并借助GitHub Copilot智能体加速开发。这种AI原生的工作方式,最终为客户带来了成本的降低、满意度的提升,并显著缩短了特定项目的交付周期。 成为“前沿企业”的旅程,不是一次简单的技术升级,而是一场深刻的业务转型。通过坚守这三大法则——让工作可见以摆脱猜测,将AI作为核心基础设施以摆脱“创新戏剧”,以及拥抱永续的实验实践以摆脱停滞——企业才能最终挣脱“试点炼狱”的束缚,真正开启价值创造的征程。 AI变革的核心,不在于引进了多少工具,而在于我们是否敢于从根本上重新思考“工作”本身。 问题不在于AI是否会重塑你的公司——它已经在这样做了。真正的问题是,你将带领你的组织脱颖而出,还是让别人来定义未来的可能性? 附录: 《Becoming a Frontier Firm》 下载地址:https://www.hrtechchina.com/Resources/B3172FC0-35E3-6E17-CA66-EA98CD61E3E6.html
    Human-AI Collaboration
    2025年11月23日