• pa
    【高阶训练营】HR未来关键技能—人力资本分析(People Analytics)高阶训练营即将开班,欢迎报名 人力资本分析(People Analytics)高阶训练营简介: 目前在优秀人力资源工作者技能需求中,People Analytics 成为关键能力之一,国内尚处于早期阶段,对于PA岗位基本年薪高于HR同职级岗位50%,PA人员的需求也极大。 我们都知道人力资源部门拥有相当大量的数据信息,特别是数字化转型后的纷繁复杂的人员数据,社交数据,数据产生和使用的场景日益多样,大的计算能力出现后,使得看似不关联的数据会产生不同的解法。HR如何更加专业和技术的去使用、测量、分析从而使组织或业务受益! C级管理者与员工期望的提升,技术的巨大进步,会使得我们HR需要进一步的掌握新的技能和知识。尤其对于决策者来讲,从以往的模糊数据结论到目前的人力洞察。 HRTechChina作为国内最早倡导和推动人力资本分析的媒体平台,特别联合科石咨询(Keystone Consulting)凭借在HR数据分析领域长达十年的推广耕耘,共同推出人力资本分析(People Analytics)高阶训练营,帮助优秀的你,帮助企业管理者决策者更清晰的获得数字化的概览的能力,结合所在行业、专业、经验、理论推动组织业绩增长! 您,是时候加入其中了! 适合的对象:人力资源总监、HR数据分析师、组织与人才效能分析专家、HRSSC负责人、HRIS负责人、PA部门同仁以及其他HR同仁   该训练营在12个月的周期内,为学员提供专属认证课程、前沿论坛、实践案例、企业参访、奖项评选、调研趋势报告、专业社群等综合的全方位支持。 训练营领衔专家: 杨冰 Robin Yang   “中国人力资源数据分析第一人”    国内组织与人才效能分析领衔专家 HRTechChina人力资本分析业务合伙人   Keystone科石咨询创始合伙人 特别安排PA训练营顾问:田旭宏 首期学员,名额有限 价格:19800元/人  现在报名赠送HRTech礼包一套,还可享受超值优惠 2人同行,可享受9折优惠 3人及以上,可享受8.5折优惠 5人以上,可享受8折优惠 训练营项目联系人:科科   微信:hrtechina 报名链接: http://hrnext.cn/usho83  
    pa
    2022年03月06日
  • pa
    如何利用People Analytics建立一个公平的工作场所 概要:自动化正向人力资源部门走来。通过自动收集和分析大型数据集,人工智能和其他分析工具有望改善人力资源管道的每个阶段,从招聘和薪酬到晋升、培训和评估。然而,这些系统可以反映历史偏见,并在种族、性别和阶级的基础上进行歧视。 管理者应该考虑到: 1)模型很可能对大多数人口群体中的个人表现最好,但对代表性较差的群体则更差; 2)不存在真正的 "种族盲 "或 "性别盲 "模型,从模型中明确省略种族或性别甚至会使情况更糟; 3)如果人口类别在你的组织中分布不均(在大多数情况下不是这样),即使精心建立的模型也不会导致不同群体的平等结果。   人力资本分析,将科学和统计方法应用于行为数据,可以追溯到弗雷德里克-温斯洛-泰勒1911年的经典著作《科学管理原理》,该书试图将工程方法应用于人员管理。但直到一个世纪后--在计算机能力、统计方法,特别是人工智能(AI)的进步之后--该领域的力量、深度和广泛的应用才真正爆发出来,特别是,但不仅仅是在人力资源(HR)管理方面。通过自动收集和分析大型数据集,人工智能和其他分析工具提供了改善人力资源管道每个阶段的承诺,从招聘和薪酬到晋升、培训和评估。 现在,算法正被用来帮助管理者衡量生产力,并在招聘、补偿、晋升和培训机会方面做出重要决定--所有这些都可能改变员工的生活。公司正在使用这种技术来识别和消除不同性别、种族或其他重要人口统计类别的薪酬差距。人力资源专业人士经常使用基于人工智能的工具来筛选简历,以节省时间,提高准确性,并发现与更好(或更差)的未来表现有关的隐藏的资格模式。基于人工智能的模型甚至可以用来建议哪些员工可能在不久的将来辞职。 然而,尽管人力资本分析工具有如此多的承诺,但它们也可能使管理者严重误入歧途。 亚马逊不得不扔掉一个由其工程师建立的简历筛选工具,因为它对女性有偏见。或者考虑一下LinkedIn,它被世界各地的专业人士用来建立网络和搜索工作,也被人力资源专业人士用来招聘。该平台的搜索栏的自动完成功能被发现建议用 "Stephen "这样的男性名字来代替 "Stephanie "这样的女性名字。 最后,在招聘方面,一个关于科学、技术、工程和数学(STEM)领域机会的社交媒体广告,被精心设计为性别中立,但在一个旨在使招聘者的广告预算价值最大化的算法中,男性被显示的比例过高,因为女性通常对广告反应更强烈,因此向她们显示的广告更昂贵。 在每一个例子中,分析过程中都出现了故障,并产生了无意的--有时是严重的--对某一特定群体的偏见。然而,这些故障可以而且必须被预防。为了实现基于人工智能的人力资本分析的潜力,公司必须了解算法偏见的根本原因,以及它们如何在常见的人力资本分析工具中发挥作用。 分析过程 数据并不是中立的。人力资本分析工具通常是建立在雇主对员工的招聘、保留、晋升和报酬的历史数据之上。这些数据总是反映了过去的决定和态度。因此,当我们试图建立未来的工作场所时,我们需要注意我们的回顾性数据如何反映旧的和现有的偏见,并可能无法完全捕捉到日益多样化的劳动力中人员管理的复杂性。 数据可能直接带有明确的偏见--例如,你公司的绩效评估可能在历史上对某个特定群体有偏见。多年来,你已经纠正了这个问题,但如果有偏见的评价被用来训练人工智能工具,算法将继承并传播偏见。 还有一些更微妙的偏见来源。例如,本科生的GPA可能被用作智力的代表,或者职业执照或证书可能是技能的一个衡量标准。然而,这些衡量标准是不完整的,往往包含偏见和扭曲。例如,在大学期间不得不工作的求职者--他们更有可能来自低收入背景--可能得到较低的成绩,但事实上他们可能是最好的求职者,因为他们已经表现出克服障碍的动力。了解你想测量的东西(如智力或学习能力)和你实际测量的东西(如学业考试成绩)之间的潜在不匹配,对建立任何人力资本分析工具都很重要,特别是当目标是建立一个更多样化的工作场所时。 一个人力资本分析工具的表现是它所提供的数据和它所使用的算法的产物。 在这里,我们提供了三条经验,你在管理你的员工时应该牢记在心。 首先,最大限度地提高预测的整体质量的模型--最常见的方法--很可能对大多数人口群体中的个人表现得最好,但对代表性较差的群体则较差。这是因为算法通常是最大化整体准确性,因此在确定算法的参数时,对多数人口的表现比对少数人口的表现有更大权重。一个例子可能是一个用于由大多数已婚或单身且无子女的人组成的劳动力的算法;该算法可能确定使用个人日的突然增加表明辞职的可能性很大,但这个结论可能不适用于那些因为孩子生病而需要时常休假的单亲父母。 第二,不存在真正的 "种族盲 "或 "性别盲 "模式。事实上,在一个模型中明确省略种族或性别,甚至会使事情变得更糟。 考虑一下这个例子。想象一下,你的基于人工智能的人力资本分析工具(你一直小心翼翼地避免提供性别信息)在预测哪些员工可能在被雇用后不久就辞职方面取得了良好的记录。你不确定该算法到底发现了什么--对用户来说,人工智能的功能经常像一个黑匣子--但你避免雇用被该算法标记为高风险的人,并看到新员工在加入后不久就辞职的人数有了明显的下降。然而,若干年后,你因在招聘过程中歧视女性而遭到诉讼。事实证明,该算法不成比例地筛选出了来自缺乏日托设施的特定邮政编码的妇女,给单身母亲带来了负担。如果你知道,你可能已经通过在工作附近提供日托服务来解决这个问题,不仅避免了诉讼,甚至使你在招聘这一地区的妇女时获得竞争优势。 第三,如果像性别和种族这样的人口统计学类别在你的组织中不成比例地分布,这是典型的情况--例如,如果过去大多数管理人员是男性,而大多数工人是女性--即使精心建立的模型也不会导致不同群体的平等结果。这是因为,在这个例子中,一个识别未来管理者的模型更有可能将女性错误地归类为不适合做管理者,而将男性错误地归类为适合做管理者,即使性别并不是模型的标准之一。总而言之,原因是模型的选择标准很可能与性别和管理能力相关,因此模型对女性和男性的 "错误 "程度不同。 如何正确对待它 由于上述原因(以及其他原因),我们需要特别注意基于人工智能的模型的局限性,并监测其在人口群体中的应用。这对人力资源部门尤其重要,因为与一般的人工智能应用形成鲜明对比的是,组织用来训练人工智能工具的数据很可能反映了人力资源部门目前正在努力纠正的不平衡现象。因此,企业在创建和监测人工智能应用时,应密切关注数据中的代表人物。更重要的是,他们应该看看训练数据的构成如何在一个方向上扭曲人工智能的建议。 在这方面,有一个工具可以提供帮助,那就是偏见仪表板,它可以单独分析人力资本分析工具在不同群体(如种族)中的表现,从而及早发现可能的偏见。这个仪表盘突出了不同群体的统计性能和影响。例如,对于支持招聘的应用程序,仪表板可以总结出模型的准确性和错误的类型,以及每个群体中获得面试机会并最终被录用的比例。 除了监测性能指标外,管理者还可以明确地测试偏见。一种方法是在训练基于人工智能的工具时排除一个特定的人口统计学变量(例如,性别),但在随后的结果分析中明确包括该变量。如果性别与结果高度相关--例如,如果一种性别被建议加薪的可能性过大--这是一个迹象,表明人工智能工具可能以一种不可取的方式隐含地纳入了性别。这可能是该工具不成比例地将女性确定为加薪的候选人,因为在你的组织中,女性往往报酬不足。如果是这样,人工智能工具正在帮助你解决一个重要问题。但也可能是人工智能工具加强了现有的偏见。需要进一步调查以确定根本原因。 重要的是要记住,没有一个模型是完整的。例如,一个员工的个性很可能会影响他们在你公司的成功,而不一定会显示在你关于该员工的人力资源数据中。人力资源专家需要对这些可能性保持警惕,并尽可能地将其记录下来。虽然算法可以帮助解释过去的数据和识别模式,但人力资本分析仍然是一个以人为本的领域,在许多情况下,特别是困难的情况下,最终的决定仍然要由人类来做,这反映在目前流行的短语 "人在环形分析 "中。 为了有效,这些人需要意识到机器学习的偏见和模型的局限性,实时监控模型的部署,并准备采取必要的纠正措施。一个有偏见意识的过程将人类的判断纳入每个分析步骤,包括意识到人工智能工具如何通过反馈回路放大偏见。一个具体的例子是,当招聘决定是基于 "文化契合度 "时,每个招聘周期都会给组织带来更多类似的员工,这反过来又使文化契合度变得更窄,有可能违背多样性目标。在这种情况下,除了完善人工智能工具之外,可能还需要扩大招聘标准。 人力资本分析,特别是基于人工智能的分析,是一个令人难以置信的强大工具,已经成为现代人力资源不可或缺的工具。但量化模型的目的是协助,而不是取代人类的判断。为了最大限度地利用人工智能和其他人力资本分析工具,你将需要持续监测应用程序如何实时工作,哪些显性和隐性标准被用来做决定和训练工具,以及结果是否以意想不到的方式对不同群体产生不同影响。通过对数据、模型、决策和软件供应商提出正确的问题,管理者可以成功地利用人力资本分析的力量来建立未来的高成就、公平的工作场所。   来自HBR ,作者  David Gaddis Ross    David Anderson   Margrét V. Bjarnadóttir
    pa
    2022年01月28日
  • pa
    人力资本分析的六步法 这并不是一个秘密。许多人力资本分析项目失败了。很多人力资本分析的自助解决方案已经实施,但很少被使用。人力资本分析的潜力没有得到充分利用的主要原因是人力资源部门内缺少人力资本分析的思维方式。对于大多数人力资源专家来说,分析并不自然。他们应该如何利用他们不知道的东西?甚至在做决定之前要求分析性的见解?人力资源部门内的分析缺陷是众所周知的。但仅仅提及这种缺失的心态并不能解决问题。我们需要把它带到人力资源部门。 那么,实际上需要什么来进行分析性的思考和决策呢?同样重要的是,我们如何才能最好地沟通这种思维方式?为了准确回答这些问题,我和英飞凌人事分析团队的同事们开发了一个六步法。这些步骤旨在确保以科学的、分析驱动的、基于事实的方法来进行决策。然而,这种方法很容易被那些不熟悉这种思维方式的人所理解。最后我们意识到,在建立正确的心态方面,这种类型的方法比仅仅谈论心态这样模糊的东西或教授统计技能要有效得多。 1. 澄清问题 这听起来更像是一种形式,但令人着迷的是,它经常被忽略掉。在这一步中,你要确保你对问题有一个清晰的认识。一份书面的问题陈述可以帮助你将自己对问题的理解与他人的理解进行反复检查。很多时候,我们似乎在某些方面达成了一致,但后来却发现每个人对这件事的解释都非常不同。 问题陈述也提醒我们,我们实际上想解决一个问题。经常发生的情况是,我们已经有了一个解决方案,但却不了解我们想要解决的问题到底是什么。 2. 形成假设 在下一个步骤中,我们要提出关于某件事情发生的原因的理论,例如,为什么某个部门的减员率这么高。提出假设对我们来说并不新鲜。每当我们在日常生活中处理决策时,我们都会下意识地对潜在问题的根本原因形成假设。然而,人力资本分析方法要求对这些假设进行明确陈述。而且,它要求你的假设不能仅仅基于你的直觉。包括文献和互联网研究,以及同事和其他主题专家的意见,是一个好主意。 现在你可能会说,我们为什么需要假设呢?数据不是应该告诉我什么是错的吗?不,这不是它的工作方式。有两个原因。第一,我们不知道该看哪些数据。外面有大量的数据。一个适当的假设有助于引导我们寻找正确的数据。第二,甚至更重要的是,数据只是数据。为了将数据转化为有意义的信息,它需要被置于背景之中。数据需要解释。再说一遍,假设正是这样做的。如果没有至少对我们正在寻找的东西有一个粗略的想法,我们就不会找到答案。没有假说的数据是毫无用处的。这就是为什么数据科学家团队永远无法单独完成工作的原因。它总是需要与主题专家紧密合作。 3. 收集数据和测试假设 在提出假设之后,就是使我们的方法真正具有分析性的阶段。我们用数据来测试我们的假设。而不是像我们在日常生活中通常做的那样,只是相信我们是对的,我们现在要证明或拒绝我们的假设。假设的提出和测试是一个反复的过程。我们形成一个假设,测试它,有时接受它,完善它,然后再次测试它。显然,人力资源从业者在这一步骤中需要很多支持。这种支持可以是来自人力资本分析团队的咨询,也可以是来自分析自我服务工具。这些自助服务工具可以从简单的Tableau或PowerBI仪表盘到复杂的云解决方案,如Visier或SplashHR。由于我们已经建立了人力资本分析心态,对先进工具的投资将不再被认为是不合理的。现在,人力资源专家是要求使用这些工具的人,因为他们需要这些工具来测试他们的假设。他们实际上利用了驱动因素和相关分析。这种情况与以前非常不同,以前一些分析专家试图推销这种解决方案,但没有人愿意。 4. 得出适当的决定 现在我们已经确定了问题的根源,是时候在第四阶段选择正确的决策方案了。这一直是人力资源从业者的核心能力,他们也确实擅长此道。由于适当的假设制定和测试,他们现在能够选择那些真正解决根本原因的措施。 5. 通过讲故事用事实和数据说服人 这一步是通过使用 "用数据讲故事 "的技巧来交流你的发现。人力资源部门越是想成为一个有战略意义的机构,就越是发现自己处于咨询的角色。而咨询意味着要说服别人。现在,许多人力资源专家已经习惯于谈论数据了。他们介绍最近的人数,或者谈论员工流失率的变化。但我们需要做的是用数据来说服人。而这恰恰是本阶段的重点。如果你正在寻找一些关于如何有效地用数据讲故事的好主意,我推荐Cole Nussbaumer的同名书籍和课程。 6. 执行决定,监测并采纳它们 最后,这一步是关于执行衍生措施和监测。即使我们采用了科学的决策方法,也不一定意味着我们得到了所有的权利。我们需要监测我们措施的成功。根据结果,我们可能需要调整措施或重新定义我们的假设。人力资本分析方法并不是一种打了就跑的事情。相反,对措施的监测为假设的制定和扩大我们基于经验的知识提供了宝贵的输入。 通过遵循这简单的6个步骤,你的人力资源工作者应该习惯于分析性思维和基于事实的决策。这最终会引发对分析自助工具、新数据和人力分析团队的咨询服务的需求。而这种来自你的人力资源从业者的需求正是一个成功的人力资本分析功能所真正需要的。 作者:Christian Otto
    pa
    2021年11月05日
  • pa
    【重磅】2021人力资本分析大奖评选揭晓,祝贺获奖企业,感谢一起推动中国的人力资本分析发展与进步! 2021年9月24日,2021人力资本分析高端私享会在上海举办,会议汇聚来自国内最优秀的人力资本分析的同仁,如来自阿里巴巴、罗氏集团、快手、蔚来汽车、星展银行、上海建筑设计研究院、卡尔蔡司、仁云科技、顾家家居、SHEIN、RRD、晨光文具等知名公司。 在现场的PA同仁见证下,会议中揭晓了2021人力资本分析大奖最佳实践奖的获奖企业,本次专业前沿的奖项,吸引了近20家优秀的企业提名参与,经过评审专家的评审,访谈,评选出以下获奖的三家企业。 在论坛中,获奖企业也现场分享了他们的最佳实践案例,纷纷表示受益匪浅! 为他们点赞! 关于2021人力资本分析大奖 HRTechChina作为国内最早倡导和推动人力资本分析的媒体平台,特别联合科石咨询(Keystone Consulting)凭借在HR数据分析领域长达十年的推广耕耘,于2021年开启国内“人力资本分析大奖”评选活动,以“新视角、新思维、新价值”为核心视角,启动的PA专业评选。人力资本分析(People Analytics)不仅关注指标、算法、工具和技术,更强调数据驱动的文化、思维和工作方式。 因此,当代人力资源管理者需要持续拥抱变化,运用数据分析的方法论和工具,借助科技手段,持续创造人力资源管理价值,为企业赋能和驱动业务增长。 2021人力资本分析大奖旨在推动People Analytics在组织中的落地和应用。 关于HRTechChina HRTechChina 是中国首家领先的专注人力资源科技商业服务平台,作为HR领域唯一深度垂直独立的第三方专业服务机构,致力于推动中国人力资源科技进步与发展,持续引领行业新科技新趋势新产品新方向。 HRTechChina核心报道中国HR科技创新企业与产品,关注并实时分享全球的人力资源科技资讯。定期发布行业市值榜单和HR科技云图,持续举办高品质的专业前沿峰会论坛,表彰认可业内先进。
    pa
    2021年09月24日
  • pa
    【调研】2021第二届人力资本分析(People Analytics)在企业中职能发展与应用实践调查 尊敬的阁下: 诚挚邀请参与《2021人力资本分析(People Analytics)在企业中职能发展与应用实践调查》 参与调研地址:http://hrnext.cn/2wbHX1   或点击阅读原文 调研简介: 行业领先的公司越来越倾向借助数据分析发现问题和引领人力资源管理价值创造,人力资本分析(People Analytics)成为当前热门话题,PA在企业中的实际运用情况究竟如何?针对这一系列问题,HRTechChina联合Keystone 科石咨询启动2021第二届 “中国企业人力资本分析(People Analytics)职能发展与应用实践”的调查研究,旨在了解人力资本分析(People Analytics)职能的在中国企业的实际发展和应用现状。请在9月11日前填写并提交本问卷,合格的内容提交者将获取本次活动的调查报告与相关洞察。 本次调研由HRTechChina联合Keystone科石咨询 共同发起。提交内容我们会认真审核提交内容,仅作为本次调研报告使用,不会泄露任何公司隐私信息。 适合参与调研的对象:CHRO、HR总监、HRSSC负责人、HRIS负责人、PA专业人员、HR经理人等相关专业人士 适合参与企业的规模:100+以上规模企业(总部规模可小于100人) 关于HRTechChina HRTechChina 是中国首家领先的专注人力资源科技商业服务平台,作为HR领域唯一深度垂直独立的第三方专业服务机构,致力于推动中国人力资源科技进步与发展,持续引领行业新科技新趋势新产品新方向。 HRTechChina核心报道中国HR科技创新企业与产品,关注并实时分享全球的人力资源科技资讯。定期发布行业市值榜单和HR科技云图,持续举办高品质的专业前沿峰会论坛,表彰认可业内先进。 关于Keystone科石 科石(Keystone Consulting)是一家聚焦于组织与HR创新的咨询机构,业务涉及管理咨询、学习发展和信息调查。科石是国内第一家聚焦组织与人力资源数据与效能分析的管理咨询机构,引领该领域管理实践与方法论的建立。通过培训、咨询等方式,推出了一系列创新产品,辅导多家企业创造业内最佳实践。 项目联系:pa@hrtechchina.com 微信客服:hrtechina  科科 参与调研地址:http://hrnext.cn/2wbHX1 
    pa
    2021年08月09日
  • pa
    【加拿大】温哥华的人力资本分析平台Visier宣布获得1.25亿美元的E轮融资、 由高盛资产管理公司牵头的融资凸显了市场对改善人员数据的需求 近日,全球公认的人力资本分析和规划领域的领导者Visier宣布,它在高盛资产管理公司(Goldman Sachs)领导的E系列融资中筹集了1.25亿美元,估值超过10亿美元。这项投资标志着人力资本分析市场增长的历史性时刻,Visier成为该领域中第一个达到10亿美元估值的独立供应商。 "Visier首席执行官Ryan Wong说:"企业对更好地了解其组织内的人员有着空前的需求。"从人力资源领导到人事经理和高管,对劳动力的洞察力对于为企业、员工、客户以及公平和公正的社会提供正确的结果至关重要。" "Visier公司联合创始人兼董事长John Schwarz说:"与高盛公司在Visier公司下一阶段发展中的合作,强调了人力资本分析已经成为主流商业实践的事实。"这项投资是将Visier确立为与人有关的商业洞察力的独立全球云平台的关键。" 由于对企业提出的更好地了解、关心和支持其员工的要求越来越多,同时也为企业带来了最佳的业绩,企业正处于迅速和大规模的转型之中。从美国证券交易委员会的法规要求更多关于多样性、公平性和包容性的数据和透明度,到大流行病带来的向远程劳动力的快速转变,对人力资本分析的需求从未像现在这样迫切。 "高盛资产管理公司的董事总经理Holger Staude说:"获取有关员工和组织健康的信息从未像现在这样重要。"我们很高兴在这个关键时刻与Visier合作,并支持该公司的持续增长。" 为了引领这个人力资本分析的新时代,Visier将利用这笔资金扩大和加快产品开发和国际市场扩张。 这项融资公告是在Visier的一个里程碑式的季度之后发布的。该公司最近宣布突破8000名客户大关,并与Cegid、PeopleFluent和Degreed签署了嵌入式合作伙伴协议。截至2021年,Visier在全球75个国家处理超过1200万条员工记录,其企业客户包括Adobe、巴斯夫、普利司通、电子艺术、麦肯锡、默克公司、Uber等。 Visier此前在四轮融资中筹集了9450万美元,使该公司的总融资额达到2.195亿美元。高盛加入了现有投资者Sorenson Capital、Foundation Capital、Summit Partners和Adams Street Partners。 有了这笔投资,Visier加入了人力资源技术供应商的精英名单,在单轮融资中筹集了超过1亿美元的资金;这家位于温哥华的公司还加入了加拿大独角兽公司的专属行列,如Clio、Wealthsimple、Thinkific、Trulioo等等。 LionTree Advisors担任财务顾问,Morgan, Lewis & Bockius LLP担任Visier的法律顾问。Sidley Austin LLP担任高盛公司的法律顾问。 关于Visier Visier是人力资本分析和劳动力规划领域公认的全球领导者。Visier于2010年由商业智能的先驱者创立,它专注于企业领导人所关心的问题:回答正确的问题,甚至是一个人可能不知道该问的问题。这些问题形成了企业战略,为采取行动提供了动力,并通过劳动力优化推动了更好的业务成果。Visier总部位于不列颠哥伦比亚省温哥华,在全球设有办事处和团队成员,在全球75个国家拥有8000名客户,包括Adobe、巴斯夫、普利司通、电子艺术、麦肯锡、默克公司、Uber等企业。  
    pa
    2021年06月30日
  • pa
    【美国】人力资本分析平台ChartHop完成3500万美元B轮融资!GOGOGO! 来自纽约的人力分析领域的领先创新者ChartHop在B轮融资中筹集了3500万美元,由Andreessen Horowitz(a16z)领投,Elad Gil以及之前的投资者Cowboy Ventures和SemperVirens加入。 这项投资是在Andreessen Horowitz于2020年夏天领投ChartHop的1400万美元A轮融资后不到一年的时间。 自2019年以来,ChartHop出现了指数级的增长,从一个人的公司到一个75人的团队。在同一时期,ChartHop建立了一个由130多个企业客户组成的客户群,在过去的12个月里,月度收入增长了17%。 这标志着Andreessen Horowitz对ChartHop的连续第三次投资,他们还在2020年初领导了ChartHop的种子轮融资。 "Andreessen Horowitz的普通合伙人David Ulevitch说:"由于人力资源和人事职能对企业的发展和成功如此关键,不幸的是,大多数人力资源团队缺乏关键的人事数据来推动组织决策。"ChartHop是解决这个太过普遍的问题的方案,它是由亲身感受过这种痛苦的公司领导人建立的。" "Ulevitch说:"ChartHop对人员分析的可视化方法使领导者能够自信地做出组织规划和战略决策。"我们很高兴领导ChartHop的B轮融资,因为他们有令人印象深刻的增长,公司的愿景,以及他们所组建的了不起的、以使命为导向的团队。" ChartHop在人员分析方面的创新方法使公司能够汇总和可视化他们的人力资源数据,在组织的各个层面提供一致性、清晰性和背景。例如,随着公司采用更公平的做法,确保薪酬变化与实际业绩数据相联系是至关重要的。通常情况下,这些数据集生活在完全独立的平台上,使得领导者很难做出基于数据的薪酬调整。这适用于有效的员工人数规划、减少员工流失、跟踪DEI计划的成功等等。 "ChartHop的客户ZoomInfo的人力资源副总裁Sara Howe说:"自从今年早些时候实施ChartHop以来,我们看到我们在参与人才常规管理方面有了明显的改善,因为他们是通过ChartHop管理的。"我们的员工发现,简单的用户界面和对他们数据的集中查看是最有帮助的功能。ZoomInfo的领导人也利用ChartHop确保他们的组织结构良好,以支持我们的持续快速增长。" ChartHop将利用这笔资金注入,通过产品增强、服务和支持方面的投资以及市场推广能力的增长,继续快速扩张业务。 "ChartHop的客户可以获得通常不可能获得的东西:准确、综合的人员数据,"创始人兼ChartHop首席执行官Ian White说。"但数据只有在可以获得的情况下才是有用的。这就是为什么我们通过组织结构图、报告和地图等熟悉的可视化方式提供数据,并让整个组织安全地使用。 "White总结说:"这笔资金使ChartHop有机会在我们强大的基础上继续发展,因此我们可以继续帮助我们的客户专注于战略性人员举措,并最终改善组织的健康状况。 关于ChartHop ChartHop为人员分析提供了新的思路,将不同来源的人员数据汇集到一个动态平台上,使其具有可视化和可操作性。与传统的人员分析解决方案不同,ChartHop被设计为供整个组织使用。这有助于企业改善组织的健康状况,推动一致性和问责制,并节省时间和金钱。ChartHop通过在整个人力资源技术堆栈中的强大集成,与数十种平台发挥了良好的作用,并为BetterCloud、Lightspeed、Starburst和InVision等公司服务。 ChartHop由Ian White于2019年创立,并得到Andreessen Horowitz的支持。
    pa
    2021年06月09日
  • pa
    【趋势】这就是亚马逊和谷歌等大公司纷纷投资于People Analytics的5个原因 领先的组织正越来越多地采用复杂的方法来分析劳动力数据,以增强其竞争优势。谷歌、亚马逊、思科和其他公司都能够了解究竟如何吸引、保留和确保其员工的生产力。人力资本分析(People Analytics)已经成为一个不可或缺的战略工具,使这些公司能够提高其卓越的绩效。 如果你想让你的劳动力--你最大的资产--有更好的表现,拥抱人力资本分析(People Analytics)而不是你的本能是前进的方向。 1. 人力资本分析(People Analytics)可以帮助组织理解不断变化的工作场所 工业4.0的引入要求组织在处理其劳动力问题时变得更加灵活。人力资本分析(People Analytics)使组织能够收集行为洞察力,并与现有的人口统计和交易信息相关联。这些洞察力使组织能够管理跨时代和跨大陆的劳动力期望,使组织能够预测不断变化的工作场所。 2. 人力资本分析(People Analytics)可以帮助推动客户的行为和洞察力 大企业开始使用预测性人力资本分析(People Analytics)来获得强大的洞察力,使他们能够吸引和保留他们的外部以及内部客户--员工。就像客户体验一样,我们可以看到在创造员工体验方面的演变,这些体验是通过人力资本分析(People Analytics)发展起来的。优先考虑员工体验已经使组织能够激发他们的潜力。 "最大的公司明白,通过应用数据驱动的工具来改善关于人才的决策,他们可以提高收入和利润。" 3. 人力资本分析(People Analytics)可以描述出促进员工队伍敬业的因素 一个有敬业度的员工队伍的效率要高57%,离职的可能性要低87%。员工敬业度被认为是用来衡量组织绩效的主要因素之一。人力资本分析(People Analytics)使组织能够磨练出获得员工敬业的因素。 4. 人力资本分析(People Analytics)将人力资源部门定位为基于事实的企业战略合作伙伴。 人力资本分析(People Analytics)对人力资源部门的预测和可信度产生了巨大影响。通过人力资本分析(People Analytics)获得的洞察力使人力资源战略家能够优化关键战略领域,如健康和安全、管理技能、领导力发展、参与度、文化协调和继任计划。使得人力资源部门能够向企业提供关于人员方面的战略洞察力。 "领先的组织正在越来越多地采用分析劳动力数据的复杂方法,以增强其竞争优势。" 5. 人力资本分析(People Analytics)有助于释放企业的无形资产的价值 企业的无形资产占企业所产生价值的80%以上。人力资本分析(People Analytics)试图捕捉和综合企业产生的这种价值。最大的公司明白,通过应用数据驱动的工具来改善有关人才的决策,他们可以提高收入和利润。
    pa
    2021年04月28日
  • pa
    【北京】2021人力资本分析专题私享会5月26日举办,欢迎参加 2021人力资本分析People Analytics 专题私享会 HR&People Analytics Summit 前沿专业,深度互动,小规模! 时间:5月26日 周三   签到:8:30-9:00 地点:北京金茂万丽酒店三楼宴会厅 (PA论坛为下午13:30-18:00,上午签到领取论坛门票) 费用:名额有限,仅限企业HR报名参加,PA方向优先,先到先得 VIP参会仅需1000元/人 (前排就坐,酒店午餐、VIP礼遇,原价1980元/人) 报名链接:http://hrnext.cn/8AjcV2 论坛介绍 本次HR&PA私享会旨在帮助参会者通过论坛获得新知,保持在职业发展中的优势地位,并及时了解全球最新的人力资本分析知识、实践与趋势等方面内容,同时通过数据如何帮助如何更好的预测,诊断和解决常见的工作挑战等。 企业研究论坛的一项研究发现,69%的大型组织(拥有10,000多名员工的组织)现在拥有一个人员分析团队。 我们都知道人力资源部门拥有相当大量的数据信息,特别是数字化转型后的纷繁复杂的人员数据,社交数据,数据产生和使用的场景日益多样,大的计算能力出现后,使得看似不关联的数据会产生不同的解法。HR如何更加专业和技术的去使用、测量、分析从而使组织或业务受益! 我们相信这是一场前沿探索和改变认知和行为的交流论坛,我们邀请行业中优秀的探索和实践者们,他们通过他们的实践和观察以及工具来帮助人力资源工作者,帮助企业管理者决策者更清晰的获得数字化的概览的能力,结合所在行业、专业、经验、理论推动组织业绩增长! 适合人员: CHRO、HR高管、PA部门同事、HRSSC、HRIS团队等相关的负责人 会议日程即将更新 上海站4月23日精彩回顾:
    pa
    2021年04月27日
  • pa
    将人力资本分析(People Analytics)与商业成果联系起来! 成功企业的领导人知道,对人才的投资是有回报的。用理查德-布兰森爵士的话说,决策者应该把人培养得足够好,以便他们能够离开;把他们对待得足够好,以便他们不想离开。( decision-makers should train people well enough so they can leave; treat them well enough so they don’t want to.) 当涉及到人力资本分析(People Analytics)时,投资的理由也同样明确。世界上最大和最成功的公司,如谷歌、苹果和微软,已经花了数年时间建立了复杂的人力资本分析(People Analytics)部门,以改善他们的团队并提高他们的效率。 尽管如此,大多数公司仍在努力使用人力资本分析(People Analytics)技术。超过一半的公司说他们在基本人力资本分析(People Analytics)方面需要帮助,尽管近四分之三的公司计划在未来五年内将其作为优先事项。尽管大多数公司并不了解人力资本分析(People Analytics)的来龙去脉,但很明显,人力资本分析(People Analytics)是未来的趋势。 如果你的公司还没有开始考虑这个问题,现在是开始的时候了。 为什么投资于人力资源优化和分析? 人力资源投资和业务成果之间的联系从未得到应有的重视。在《投资于重要的东西。中,Scott Mondore和Shane Douthitt指出,财富500强公司有时会在他们的年度报告中包括关于人力资源的一般数字(如 "10亿美元用于培训")。然而,这些数字很少与具体的结果联系起来(例如,"在培训上花费10亿美元,使生产力提高了25%,投资回报率达到50亿美元")。将人力资源实践与真正的商业成果联系起来不是很好吗? 今天,没有理由不这样做。公司有能力获得比以往更多的数据,并可以使用先进的技术来分析这些数据。有了机器学习和人工智能驱动的分析软件,再加上模型构建和科学评估开发方面的统计专业知识,企业可以对其流程进行微调,并获得可衡量的结果。 通过使用人力资本分析(People Analytics)来改善人力资源成果和量化绩效,公司不仅可以在数字化的世界中保持竞争力,还可以大大提升关键业务成果。 以下是今天投资于人力资源和人力资本分析(People Analytics)的一些重要原因。 1. 减少人员流失 预测分析可以帮助你了解谁有可能离开你的组织以及为什么。通过检查现有的数据,雇主可以确定离职的情况,并揭示可能让你吃惊的趋势。 与其对造成人员流失的原因进行假设,人力资源专业人员应该通过预测模型来确定经过验证的变量。一些可能影响离职率的变量包括工资、福利、通勤时间、使用的病假、社区嵌入度和绩效审查分数,这些都是一些常规的罪魁祸首。 减少离职率是很重要的,因为它对组织来说是如此昂贵。每一个员工的离职都要花费该员工年薪的三分之一。根据本文写作时美国这些工作的工资中位数,失去一名营销经理的成本为35,224美元,一名中级软件工程师的成本为29,714美元。流失的成本不仅包括在招聘时花费的时间、精力和金钱,还包括必须培训新员工并使其融入团队而损失的生产力。我们也不要忘记失去机构记忆的无价成本。 2. 提高员工的敬业度 员工的敬业度和参与度对业务盈亏有直接影响。根据盖洛普(Gallup)的荟萃分析,敬业度高的组织的利润率提高了22%,生产率提高了21%,而且营业额也大大降低。员工敬业度的问题在于,它可能难以衡量,甚至难以改善。  通过在公司中建立强大的数据文化,您可以更轻松地了解参与度。您还可以通过简化流程来提高整体参与度。例如,诸如组织网络分析之类的人员分析技术可帮助您确定高度协作的员工,这些员工可能是晋升为管理层的良好人选。由于经理在员工敬业度中占70%的差异,因此寻找和培养优秀的经理对于创建更多敬业度高的团队并从而推动实际业务成果至关重要。  通过在你的公司发展一个强大的数据文化,你可以更容易了解参与度的情况。你也可以通过简化你的流程来全面提高参与度。例如,像组织网络分析这样的人力资本分析(People Analytics)技术可以帮助你识别高度协作的员工,他们可能是晋升到管理层的良好候选人。由于管理人员占员工参与度差异的70%,寻找和发展优秀的管理人员是创造更多参与的团队,从而推动真正的业务成果的关键。 3. 提高生产力 创建更强大的团队和减少人员流动也可以提高你公司的生产力。发表在《哈佛商业评论》上的研究表明,平均而言,公司因 "组织阻力 "或低效结构和流程而损失了20%以上的生产能力。 通过人力资本分析(People Analytics),你可以改善构成人力资源职能的几乎所有流程,从入职和离职到绩效评估和学习与发展。适当地收集、存储和分析数据将使你对这些职能目前的工作情况有新的认识,以及你可以做什么来改善它们。 4. 鼓励创新 最后,投资于人力资源和人力资本分析(People Analytics)将导致加强创新。94%的高管说,当涉及到创新时,文化是最重要的因素,而文化在很大程度上是由领导者驱动的;领导者创造强大的团队,并为文化雇用合适的人。从字面上看,而不是比喻,是人创造了这个地方。 如果你正在寻找更好的雇员,那么值得看看你的招聘过程,以及你如何能够改进它。从你举行的面试次数到使用的选择评估,一个强大的、以数据为导向的过程可以帮助你为你的企业找到并选择最好的新团队成员。同样,在培养领导者时,你应该把重点放在与业务成果直接相关的能力上,而把不相关的能力(以及那些你 "认为 "应该有所作为的能力)放在后面。 未来在于人力资本分析(People Analytics) 在不断变化的经济中,人力资本分析(People Analytics)已经变得至关重要。1975年,标准普尔500强公司83%的价值与实物资产挂钩,而现在84%的价值与人力资本挂钩。今天的知识型企业以人作为其独特的卖点。不对这些人进行投资将是一个错失的机会(并可能给你的公司带来厄运)。 世界顶级公司已经在使用数据来推动人力资源的成功。全球人才管理实践高级总监Amanda Tomkoria说,以下是耐克如何看待人力资本分析(People Analytics)。"我们有一个人才愿景--最好的人来到耐克,每天都会选择留下来。衡量标准帮助我们把这个愿景变为现实。就像我们用财务和运营数据跟踪业务成功一样,人力资本分析(People Analytics)是我们对自己负责的方式,因为我们衡量进展,知道我们是否在朝着正确的方向实现这个愿景。" 随着技术的发展和环境的变化,选择和建立强大的、训练有素的团队已变得更加重要。COVID-19大流行病揭示了对有效的领导者、适应性强的员工和出错时的应急计划的强烈需求。不过,更广泛地说,人力资源部门的领导人谈论技能差距已经有一段时间了,特别是在数字和高技能领域。寻找、培训和提升最优秀的人才是缩小这种技能差距和推动关键业务成果的关键。在我们寻求投资于最重要的东西--我们的人时,人力资本分析(People Analytics)可以提供一个高度准确的投资策略。 "就像高性能的运动队一样,耐克使用洞察力来确定优先事项。然后,我们利用这些洞察力进行必要的调整,以便我们能够提供对我们的员工最重要的东西--加速包容、高性能、学习和辅导的文化。数据使我们能够创新和快速行动,"Tomkoria补充说。 总结 即使是那些想投资于人力资源和人力资本分析(People Analytics)的公司,开始可能是艰难的。但是许多组织没有专门的人才或软件来开始进行人力资本分析(People Analytics),他们也可能不具备支持数据文化的流程。好在有很多帮助和资源可以利用(比如HRTechChina早在2018年就设立了PA专栏,你可以充分的学习),无论你是想启动一个特定的项目,培训你现有的员工,还是仅仅想了解更多关于人力资本分析(People Analytics)的信息,都有解决方案。永远不要忘记,人是任何成功公司的核心。有了你的时间和投资,他们可以把你的企业带到新的高度。 作者Craig Wallace是一位组织心理学家,目前是克莱姆森大学商学院的管理学系主任。
    pa
    2021年04月25日
  • 1234
关于我们  | 商务合作  | 加入我们  | 那年今日  | 招聘科技峰会精彩回顾  | 上海科技峰会回顾  | 首届HR区块链峰会  | 2017HRTech年度颁奖  | people analytics  | 候选人体验大奖  | HR科技极客大奖  | 深圳科技峰会精彩回顾  | HR共享服务平台  | 三支柱论坛2018  | 2018数字人力资源科技奖榜单  | 2018 数字人力资源科技奖  | 北京2018HRTechCon精彩回顾  | 2018HRTechXPO  | 2018TOP100人物榜单  | 2019年度活动计划  | 2018年度大奖揭晓  | 2018投融资报告  | 2017投融资报告  | INSPIRE 2019精彩回顾  | 2019海外活动计划  | 2019北京招聘科技论坛精彩回顾  | 2019深圳人力资本分析峰会精彩回顾  | 2019中国人力资源科技峰会上海精彩回顾  | 2019HR科技极客大奖  | 北京HRTechXPO未来馆精彩回顾  | 深圳·2019招聘科技创新论坛精彩回顾  | 2019候选人体验大奖榜单  | 中国人力资源科技云图  | 招聘科技云图  | 2019上海招聘科技创新论坛精彩回顾  | 深圳7月19日HRTechXPO精彩回顾  | 2019HRPA上海站精彩回顾  | 2019中国人力资源科技创新奖  | 深圳·2019中国人力资源科技年度峰会精彩回顾  | 2019北京HR科技峰会精彩回顾  | 2019数字人力资源科技奖榜单  | 2019HRTechChina TOP人物榜单  | 2019HRTechTOP人物列表  | 2020中国人力资源科技十大趋势  | 2019HRTechXPO-上海精彩回顾  | 2020HRTechChina品牌活动计划  | 2020HRTech云图入口  | 共同战疫专题  | 2019年度评选榜单  | 2020招聘科技创新虚拟峰会精彩回顾  | 助力企业共同抗疫专题  | 2020年度候选人体验大奖(中国地区)榜单揭晓  | 2020HRTech虚拟峰会精彩回顾  | 提交业务需求  | HR专业直播  | 2020HR科技年度峰会·上海精彩回顾  | 2020HR科技年度峰会·深圳  | 2020中国人力资源科技创新奖榜单  | 2020员工体验中国峰会上海精彩回顾  | 2020数字人力资源科技奖(DigitalHRTech® Awards 2020)获奖榜单重磅揭晓  | 2020中国人力资源科技影响力TOP人物揭晓  | 2020中国人力资源科技影响力TOP人物榜单  | 北京·2020中国人力资源科技年度峰会  | 上海站精彩回顾-2020HRTechXPO未来人力资源科技论坛  | 影响力品牌50强  | 2020HRTechXPO未来人力资源科技论坛·北京站精彩回顾  | HR科技云图认证服务  | EXInstitute.cn  | 2021年度HRTech活动计划安排与评选奖项计划  | 中国人力资源科技发展十大趋势  | 2020年度大奖榜单  | 员工体验研究院  | 2021HRTech创新品牌30强榜单  | 员工体验指数测评  | 2021升级版员工体验旅程图下载  | 2021员工体验大奖榜单  | 2021员工体验中国指数:73.4  | 2021候选人体验大奖榜单  | 2021HR科技创新奖榜单  | 2021人力资本分析大奖揭晓  | 2021数字人力资源科技大奖榜单  | 2021HRTechChina影响力TOP人物榜单  | 详细榜单-2021HRTech影响力TOP人物榜单  | 2022年论坛活动计划  | 中国人力资源科技影响力品牌50强(Brands 50 HRTechChina Influence)榜单  | 2022年度中国人力资源科技发展十大趋势  | 2021中国人力资源科技年度大奖榜单  | 订阅HRTech资讯邮件  | HR科技云图